精英家教网 > 高中数学 > 题目详情
已知中心在原点,焦点在y轴上的双曲线C的虚轴长为2,实轴长为4,则双曲线C的方程是(  )
A、
x2
4
-y2=1
B、
x2
16
-
y2
4
=1
C、
y2
4
-x2=1
D、
y2
16
-
x2
4
=1
分析:由题意设双曲线的方程为
y2
a2
-
x2
b2
=1
,(a,b>0).利用已知虚轴长为2,实轴长为4,即可得出.
解答:解:由题意设双曲线的方程为
y2
a2
-
x2
b2
=1
,(a,b>0).
∵2b=2,2a=4,
解得a=2,b=1.
∴要求的双曲线方程为
y2
4
-x2=1

故选:C.
点评:本题考查了双曲线的标准方程及其性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知中心在原点,焦点在x轴上的双曲线的一条渐近线为mx-y=0,若m在集合{1,2,3,4,5,6,7,8,9}中任意取一个值,使得双曲线的离心率大于3的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•大兴区一模)已知中心在原点,焦点在x轴上的双曲线的离心率为
3
2
,实轴长为4,则双曲线的方程是
x2
4
-
y2
5 
=1
x2
4
-
y2
5 
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点,焦点在x轴上的双曲线C,过点P(2,
3
)且离心率为2,则双曲线C的标准方程为
x2
3
-
y2
9
=1
x2
3
-
y2
9
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•合肥模拟)已知中心在原点,焦点在x轴上的双曲线的一条渐近线的方程为y=
1
2
x
,则此双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点,焦点在坐标轴上的双曲线的一条渐近线方程为
3
x-y=0
,则该双曲线的离心率为(  )

查看答案和解析>>

同步练习册答案