精英家教网 > 高中数学 > 题目详情
9.已知向量$\vec a$,$\vec b$满足$\vec a$=$(-2sinx,\sqrt{3}(cosx+sinx))$,$\vec b$=(cosx,cosx-sinx),函数f(x)=$\vec a$•$\vec b$(x∈R).
(Ⅰ)将f(x)化成Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<π)的形式;
(Ⅱ)求函数f(x)的单调递减区间;
(Ⅲ) 求函数f(x)在$x∈[0,\frac{π}{2}]$的值域.

分析 (Ⅰ)根据平面向量的数量积与三角函数的恒等变换,求出f(x)并化简即可;
(Ⅱ)根据正弦函数的单调减区间,求出函数f(x)的单调减区间;
(Ⅲ)求出x∈[0,$\frac{π}{2}$]时,函数f(x)的取值范围即可.

解答 解:(Ⅰ)∵$\vec a$=$(-2sinx,\sqrt{3}(cosx+sinx))$,$\vec b$=(cosx,cosx-sinx),
∴f(x)=$\vec a$•$\vec b$
=-2sinxcosx+$\sqrt{3}$(cosx+sinx)(cosx-sinx)
=-sin2x+$\sqrt{3}$cos2x
=2(sin2xcos$\frac{2π}{3}$+cos2xsin$\frac{2π}{3}$)
=2sin(2x+$\frac{2π}{3}$);
(Ⅱ)令$\frac{π}{2}$+2kπ≤2x+$\frac{2π}{3}$≤$\frac{3π}{2}$+2kπ,k∈Z,
即-$\frac{π}{6}$+2kπ≤2x≤$\frac{5π}{6}$+2kπ,k∈Z,
∴-$\frac{π}{12}$+kπ≤x≤$\frac{5π}{12}$+kπ,k∈Z,
∴f(x)的单调减区间为$[kπ-\frac{π}{12},kπ+\frac{5π}{12}],k∈Z$;
(Ⅲ)当x∈[0,$\frac{π}{2}$]时,∴2x∈[0,π],
∴2x+$\frac{2π}{3}$∈[$\frac{2π}{3}$,$\frac{5π}{3}$],
∴sin(2x+$\frac{2π}{3}$)∈[-1,$\frac{\sqrt{3}}{2}$],
∴2sin(2x+$\frac{2π}{3}$)∈[-2,$\sqrt{3}$];
即f(x)的值域是$[-2,\sqrt{3}]$.

点评 本题考查了平面向量的数量积以及三角函数的图象与性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知圆锥高为H,底面半径为R,则它的内接圆柱的高为x,则这个内接圆柱的侧面积为-$\frac{2πR}{H}$(x-$\frac{H}{2}$)2+$\frac{πRH}{2}$,当x=$\frac{H}{2}$时,内接圆柱的侧面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设x>1,y>1,且满足log7(x+y)=log7x+log7y,则log7(x-1)+log7(y-1)的值等于(  )
A.7B.1C.log72D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知O是△ABC的外心,|$\overrightarrow{AB}$|=$\sqrt{2}$|$\overrightarrow{AC}$|=2$\sqrt{2}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=-4,若$\overrightarrow{AO}$=x1 $\overrightarrow{AB}$+x2$\overrightarrow{AC}$,则x1+x2的值为$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直棱柱ABC-A1B1C1,∠ACB=60°,AC=BC=4,AA1=6,E、F分别是棱CC1、AB的中点.
(1)求证:平面 AEB1⊥平面AA1B1B;
(2)求四棱锥A-ECBB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=e2x+(1-2t)ex+t2
(1)若g(t)=f(1),讨论关于t的函数y=g(t)在t∈[0,m](m>0)上的最小值;
(2)若对任意的t∈R,x∈[0,+∞)都有f(x)≥ax+2-cosx,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,直线L与抛物线y2=4x相交于不同的A、B两点.且$\overrightarrow{OA}$•$\overrightarrow{OB}$=-4.
(1)证明直线L必过一定点,并求出该定点.
(2)求线段AB的中点P的轨迹方程.
(3)求三角形AOB面积最小时,直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.计算:1+lg22+lg5•lg20的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知集合A={x|1≤x≤2},B={x|x2+ax+2≤0} a∈R.
(1)若A=B,求实数a的取值.
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

同步练习册答案