精英家教网 > 高中数学 > 题目详情

【题目】设函数的定义域为如果 使为常数)成立,则称函数上的均值为.给出下列四个函数.则其中满足在其定义域上均值为2的函数是__________

【答案】

【解析】原问题等价于对于任意的x1D,存在唯一的x2D,使f(x1)+f(x2)=4成立的函数。

y=x2,f(x1)+f(x2)=4,此时,,不存在满足题意的,故不满足条件;

y=2x定义域为R,值域为y>0.对于x1=3,f(x1)=8.要使f(x1)+f(x2)=4成立,f(x2)=4,不成立;

y=lnx,定义域为x>0,值域为R且单调,f(x1)+f(x2)=4,此时,不存在满足题意的,故满足条件;

,f(x1)+f(x2)=4,此时,,不存在满足题意的,故不满足条件;

综上可得:满足在其定义域上均值为2的函数是③.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校400名学生在一次百米赛跑测试中,成绩全部都在12秒到17秒之间,现抽取其中50个样本,将测试结果按如下方式分成五组:第一组,第二组,…,第五组,如图所示的是按上述分组方法得到的频率分布直方图.

(1)请估计该校400名学生中,成绩属于第三组的人数;

(2)请估计样本数据的中位数(精确到0.01);

(3)若样本第一组中只有一名女生,其他都是男生,第五组则只有一名男生,其他都是女生,现从第一、第五组中各抽取2名同学组成一个特色组,设其中男同学的人数为,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆 的离心率为 为椭圆的左右顶点,焦点到短轴端点的距离为2, 为椭圆上异于的两点,且直线的斜率等于直线斜率的2倍.

(Ⅰ)求证:直线与直线的斜率乘积为定值;

(Ⅱ)求三角形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an22cos2nN*,等差数列{bn}满足a12b1a2b2.

(1)bn

(2)cna2n1b2n1a2nb2n,求cn

(3)求数列{anbn}2n项和S2n.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中, 平面 的中点

(Ⅰ)求证:

(Ⅱ)求平面与平面所成锐二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为F1(-c,0),F2(c,0),直线交椭圆E于A,B两点,△ABF1的周长为16,△AF1F2的周长为12.

(1)求椭圆E的标准方程与离心率;

(2)若直线l与椭圆E交于C,D两点,且P(2,2)是线段CD的中点,求直线l的一般方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知在极坐标系和直角坐标系中,极点与直角坐标系的原点重合,极轴与轴的非负半轴重合,曲线的极坐标方程为曲线的参数方程为为参数.

1)求曲线的直角坐标方程和曲线的普通方程;

(2)判断曲线与曲线的位置关系,若两曲线相交,求出两交点间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义在上的单调函数,且对于任意正数,已知,若一个各项均为正数的数列满足,其中是数列的前项和,则数列中第18

A. B. 9 C. 18 D. 36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,f(x1)为奇函数,f(0)0,当x(01]时,f(x)log2x,则在区间(89)内满足方程f(x)2的实数x(  )

A.

B.

C.

D.

查看答案和解析>>

同步练习册答案