精英家教网 > 高中数学 > 题目详情

【题目】某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为了研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:,分别加以统计,得到如图所示的频率分布直方图.

(1)根据“25周岁以上组”的频率分布直方图,求25周岁以上组工人日平均生产件数的中位数的估计值(四舍五入保留整数);

(2)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至多抽到一名“25周岁以下组”工人的概率

【答案】(1)73;(2)

【解析】

(1)根据频率分布直方图求得中位数的估计值;

(2)由分层抽样的特点可得样本中有25周岁以上、下组工人人数,再由所对应的频率可得样本中日平均生产件数不足60件的工人中,25周岁以上、下组工人的人数分别为3,2,由古典概型的概率公式可得答案.

(1)中位数:

(2)25周岁以上的有:(人)

25周岁以下的有:(人)

故至多抽到一名“25周岁以下组”工人的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示圆锥的轴截面为等腰直角△SABQ为底面圆周上一点.

(1)QB的中点为COHSC求证OH⊥平面SBQ

(2)如果∠AOQ=60°,QB=2求此圆锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分图象如图所示,若将f(x)图象上的所有点向右平移 个单位得到函数g(x)的图象,则函数g(x)的单调递增区间为(

A.[kπ﹣ ,kπ+ ],k∈Z
B.[2kπ﹣ ,2kπ+ ],k∈Z
C.[kπ﹣ ,kπ+ ],k∈Z
D.[2kπ﹣ ,2kπ+ ],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的两个焦点分别为F1(﹣ ,0),F2 ,0),且椭圆C过点P(3,2).
(1)求椭圆C的标准方程;
(2)与直线OP平行的直线交椭圆C于A,B两点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥ABCD的棱长都相等,E是AB的中点,则异面直线CE与BD所成角的余弦值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2ωx+2 sinωxcosωx﹣cos2ωx(ω>0),f(x)的图象相邻两条对称轴的距离为
(1)求f( )的值;
(2)将f(x)的图象上所有点向左平移m(m>0)个长度单位,得到y=g(x)的图象,若y=g(x)图象的一个对称中心为( ,0),当m取得最小值时,求g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x﹣a|,a<0.
(1)证明f(x)+f(﹣ )≥2;
(2)若不等式f(x)+f(2x)< 的解集非空,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】方程的曲线即为函数的图像,对于函数,有如下结论:①上单调递减;②函数不存在零点;③函数的值域是;④的图像不经过第一象限,其中正确结论的个数是___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌汽车4S店,对该品牌旗下的A型、B型、C型汽车进行维修保养,每辆车一年内需要维修的人工费用为200元,汽车4S店记录了该品牌三种类型汽车各100辆到店维修的情况,整理得下表:

车型

A型

B型

C型

频数

20

40

40

假设该店采用分层抽样的方法从上维修的100辆该品牌三种类型汽车中随机抽取10辆进行问卷回访.
(1)从参加问卷到访的10辆汽车中随机抽取两辆,求这两辆汽车来自同一类型的概率;
(2)某公司一次性购买该品牌A、B、C型汽车各一辆,记ξ表示这三辆车的一年维修人工费用总和,求ξ的分布列及数学期望(各型汽车维修的概率视为其需要维修的概率);
(3)经调查,该品牌A型汽车的价格与每月的销售量之间有如下关系:

价格(万元)

25

23.5

22

20.5

销售量(辆)

30

33

36

39

已知A型汽车的购买量y与价格x符合如下线性回归方程: = x+80,若A型汽车价格降到19万元,请你预测月销售量大约是多少?

查看答案和解析>>

同步练习册答案