精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xoy中,直线,设圆C的半径为1,圆心在.

(1)若圆心C也在直线上,①求圆C的方程;

②过点作圆C的切线,求切线的方程;

(2)若圆在直线截得的弦长为,求圆C的方程.

【答案】1)①,②,(2

【解析】

1)①联立求出圆心坐标,再根据半径为即可写出圆的标准方程.②分别讨论斜率不存在和存在时的情况,利用直线和圆相切的关系即可求出切线方程.

2)首先设出圆心坐标,根据直线截得的弦长为,圆的半径为,得到圆心到的距离为,再利用点到直线的距离公式即可求出圆心坐标和圆的标准方程.

1)①由题知:.

所以圆心为,圆.

②当斜率不存在时,

圆心的距离为,符合题意.

当斜率存在时,设切线为:.

,解得,即切线为:.

综上所述,切线为:.

2)因为圆心在上,设圆心为.

因为直线截得的弦长为,圆的半径为

所以圆心到的距离为.

所以,即.

所以圆

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分12)

已知函数(其中a是实数).

(1)求的单调区间;

(2)若设,且有两个极值点 ,求取值范围.(其中e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如下:

消费次第

收费比率

该公司注册的会员中没有消费超过次的,从注册的会员中,随机抽取了100位进行统计,得到统计数据如下:

消费次数

人数

假设汽车美容一次,公司成本为元,根据所给数据,解答下列问题:

1)某会员仅消费两次,求这两次消费中,公司获得的平均利润;

2)以事件发生的频率作为相应事件发生的概率,设该公司为一位会员服务的平均利润为元,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在2018、2019每高考数学全国Ⅰ卷中,第22题考查坐标系和参数方程,第23题考查不等式选讲.2018年髙考结束后,某校经统计发现:选择第22题的考生较多并且得分率也较高.为研究2019年选做题得分情况,该校高三质量检测的命题完全采用2019年高考选做题模式,在测试结束后,该校数学教师对全校高三学生的选做题得分进行抽样统计,得到两题得分的统计表如下(已知每名学生只选做—道题):

第22题的得分统计表

得分

0

3

5

8

10

理科人数

50

50

75

125

200

文科人数

25

25

125

0

25

第23题的得分统计表

得分

0

3

5

8

10

理科人数

30

52

58

60

200

文科人数

5

10

10

5

70

(1)完成如下2×2列联表,并判断能否有99%的把握认为“选做题的选择”与“文、理科的科类”有关;

选做22题

选做23题

总计

理科人数

文科人数

总计

(2)若以全体高三学生选题的平均得分作为决策依据,如果你是考生,根据上面统计数据,你会选做哪道题,并说明理由.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图的空间几何体中,四边形为边长为2的正方形,平面,且.

1)求证:平面平面

2)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了了解该校某年级学生的阅读量(分钟),随机抽取了n名学生,调查他们一天的阅读时间,统计结果下图表所示:

组号

分组

男生

人数

男生人数占本

组人数的频率

频率分布直方图

1

5

0.5

2

18

0.9

3

24

0.8

4

0.4

5

3

0.2

1)求出的值;

2天的阅时间不少于35分钟称为喜好阅读者”.根据以上数据,完成下面的列联表,并回答能否在犯错误的概率不超过0.05的前提下认为喜好阅读者性别有关?

喜好阅读者

非喜好阅读者

合计

男生

女生

合计

附:(其中为样本容量).

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点P是菱形ABCD所在平面外一点,且平面ABCD.

(1)求证:平面平面PCE

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,楔形几何体由一个三棱柱截去部分后所得,底面侧面,楔面是边长为2的正三角形,点在侧面的射影是矩形的中心,点上,且.

1)证明:平面

2)求楔形几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线与坐标轴的交点都在圆上.

(1)求圆的方程;

(2)若圆与直线交于两点,且,求的值.

查看答案和解析>>

同步练习册答案