【题目】已知函数定义域为R,对于任意R恒有.
(1)若,求的值;
(2)若时,,求函数,的解析式及值域;
(3)若时,,求在区间,上的最大值与最小值.
科目:高中数学 来源: 题型:
【题目】针对国家提出的延迟退休方案,某机构进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:
支持 | 保留 | 不支持 | |
岁以下 | |||
岁以上(含岁) |
(1)在所有参与调查的人中,用分层抽样的方法抽取个人,已知从持“不支持”态度的人中抽取了人,求的值;
(2)在持“不支持”态度的人中,用分层抽样的方法抽取人看成一个总体,从这人中任意选取人,求至少有一人年龄在岁以下的概率.
(3)在接受调查的人中,有人给这项活动打出的分数如下: , , , , , , , , , ,把这个人打出的分数看作一个总体,从中任取一个数,求该数与总体平均数之差的绝对值超过概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程为(为参数),以原点为极点, 轴的正半轴为极轴,取相同的长度单位建立极坐标系,圆的极坐标方程为.
(1)求圆的直角坐标方程,并写出圆心和半径;
(2)若直线与圆交于两点,求的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中正确的是( )
A.若两条直线互相平行,那么它们的斜率相等
B.方程能表示平面内的任何直线
C.圆的圆心为,半径为
D.若直线不经过第二象限,则t的取值范围是
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线方程为,其中.
(1)求证:直线恒过定点;
(2)当变化时,求点到直线的距离的最大值及此时的直线方程;
(3)若直线分别与轴轴的负半轴交于两点,求面积的最小值及此时的直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中.
(Ⅰ)讨论函数极值点的个数;
(Ⅱ)若函数有两个极值点,其中且,是否存在整数使得不等式
恒成立?若存在,求整数的值;若不存在,请说明理由.(参考数据: )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com