精英家教网 > 高中数学 > 题目详情
13.如图.在直四棱柱ABCD-A1B1C1D1中,E,F分別AB,BC的中点,A1C1与B1D1交于点O.
(1)求证:A1,C1,F,E四点共面;
(2)若底面ABCD是菱形,且OD⊥A1E,求证:OD丄平面A1C1FE.

分析 (1)连接AC,由EF是△ABC的中位线,可得EF∥AC,又AA1$\stackrel{∥}{=}$CC1,可证AC∥A1C1,从而可证EF∥A1C1,即A1,C1,F,E四点共面;
(2)连接BD,可证DD1⊥A1C1,又A1C1⊥B1D1,可证A1C1⊥平面BB1DD1,可得OD⊥A1C1,结合OD⊥A1E,即可证明OD⊥平面A1C1FE.

解答 (本题满分为14分)
解:(1)连接AC,因为E,F分别是AB,BC的中点,所以EF是△ABC的中位线,
所以EF∥AC,
由直棱柱知:AA1$\stackrel{∥}{=}$CC1,所以四边形AA1C1C为平行四边形,所以AC∥A1C1,…5分
所以EF∥A1C1
故A1,C1,F,E四点共面;…7分,
(2)连接BD,因为直棱柱中DD1⊥平面A1B1C1D1,A1C1?平面A1B1C1D1
所以DD1⊥A1C1
因为底面A1B1C1D1是菱形,所以A1C1⊥B1D1
又DD1∩B1D1=D1,所以A1C1⊥平面BB1DD1,…11分
因为OD?平面BB1DD1
所以OD⊥A1C1
又OD⊥A1E,A1C1∩A1E=A1,A1C1?平面A1C1FE,A1E?平面A1C1FE,
所以OD⊥平面A1C1FE…14分

点评 本题主要考查了直线与平面垂直的判定,线面垂直的性质的应用,考查了空间想象能力和推理论证能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.计算:($\frac{8}{27}$)${\;}^{-\frac{2}{3}}$-lg$\sqrt{2}$-lg$\sqrt{5}$=$\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设集合A={x|2log${\;}_{\frac{1}{2}}$2x-21log8x+3≤0},若当x∈A时,函数f(x)=log2$\frac{x}{{2}^{a}}$•log2$\frac{x}{4}$的最大值为2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.己知数列{an}和致列{bn}满足a1=m,an+1=λan+n,bn=an-$\frac{2n}{3}$+$\frac{4}{9}$.
(Ⅰ)当m=1时,求证:对于任意的实数λ,{an}一定不是等差数列;
(Ⅱ)当λ=-$\frac{1}{2}$,m≠$\frac{2}{9}$时,判断{bn}是否为等比数列;
(Ⅲ)设Sn为数列{bn}的前项和,在(Ⅱ)的条件下,是否存在实数m,使得对任意的正整数n,都有$\frac{1}{3}$≤Sn≤$\frac{2}{3}$?若存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.连续2次抛掷-枚骰子(六个面上分别标有数字1,2,3,4,5,6).则事件“两次向上的数字之和等于7”发生的概率为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,内角A,B,C的时边分别为a,b,c,△ABC的面积记为S,若acosB+bcosA=c•sinC,且S=$\frac{1}{4}$(b2+c2-a2),则角B=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知tan(α+β)=$\frac{2}{5}$,tan(β-$\frac{π}{4}$)=$\frac{1}{4}$,则tan(α+$\frac{π}{4}$)的值为(  )
A.$\frac{1}{6}$B.$\frac{22}{13}$C.$\frac{3}{22}$D.$\frac{13}{18}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知双曲线的中心在原点,实轴在x轴上,实轴长为2$\sqrt{3}$,且两条渐近线的夹角为60°,则此双曲线方程为$\frac{{x}^{2}}{3}-\frac{{y}^{2}}{9}$=1或$\frac{{x}^{2}}{3}-{y}^{2}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的两条渐近线与直线x=1围成的三角形的面积为$\sqrt{3}$.

查看答案和解析>>

同步练习册答案