精英家教网 > 高中数学 > 题目详情

【题目】随着科学技术的飞速发展,网络也已经逐渐融入了人们的日常生活,网购作为一种新的消费方式,因其具有快捷、商品种类齐全、性价比高等优势而深受广大消费者认可.某网购公司统计了近五年在本公司网购的人数,得到如下的相关数据(其中x=1”表示2015年,x=2”表示2016年,依次类推;y表示人数)

x

1

2

3

4

5

y(万人)

20

50

100

150

180

1)试根据表中的数据,求出y关于x的线性回归方程,并预测到哪一年该公司的网购人数能超过300万人;

2)该公司为了吸引网购者,特别推出玩网络游戏,送免费购物券活动,网购者可根据抛掷骰子的结果,操控微型遥控车在方格图上行进. 若遥控车最终停在胜利大本营,则网购者可获得免费购物券500元;若遥控车最终停在失败大本营,则网购者可获得免费购物券200. 已知骰子出现奇数与偶数的概率都是,方格图上标有第0格、第1格、第2格、、第20格。遥控车开始在第0格,网购者每抛掷一次骰子,遥控车向前移动一次.若掷出奇数,遥控车向前移动一格(从)若掷出偶数遥控车向前移动两格(从),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。设遥控车移到第格的概率为,试证明是等比数列,并求网购者参与游戏一次获得免费购物券金额的期望值.

附:在线性回归方程中,.

【答案】(1),预计到2022年该公司的网购人数能超过300万人;

2)约400.

【解析】

1)依题意,先求出,代入公式即可得到,可得回归方程为,令.所以预计到2022年该公司的网购人数能超过300万;

2)遥控车移到第)格的情况是下列两种,而且也只有两种.

①遥控车先到第格,又掷出偶数,其概率为

②遥控车先到第格,又掷出奇数,其概率为

所以,即可证得是等比数列,

利用累加法求出数列的通项公式,即可求得失败和获胜的概率,从而计算出期望.

解:(1

从而

所以所求线性回归方程为

,解得.

故预计到2022年该公司的网购人数能超过300万人

2)遥控车开始在第0格为必然事件,,第一次掷骰子出现奇数,遥控车移到第一格,其概率为,.遥控车移到第)格的情况是下列两种,而且也只有两种.

①遥控车先到第格,又掷出奇数,其概率为

②遥控车先到第格,又掷出偶数,其概率为

所以

时,数列是公比为的等比数列

以上各式相加,得

),

获胜的概率

失败的概率

设参与游戏一次的顾客获得优惠券金额为元,

X的期望

参与游戏一次的顾客获得优惠券金额的期望值为,约400.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.如图,四棱锥中,底面为平行四边形,底面

(1)求证:平面.试判断四面体是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;

(2),求点A到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次数学考试中,从甲乙两个班各抽取10名学生的数学成绩进行统计分析,两个班样本成绩的茎叶图如图所示.

1)用样本估计总体,若根据茎叶图计算得甲乙两个班级的平均分相同,求的值;

2)从样本中任意抽取3名学生的成绩,若至少有两名学生的成绩相同的概率大于,则该班成绩判断为可疑.试判断甲班的成绩是否可疑?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆,以坐标原点为极点,轴正半轴为极轴,直线的极坐标方程为,直线交圆两点,中点.

1)求点轨迹的极坐标方程;

2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着科学技术的飞速发展,网络也已经逐渐融入了人们的日常生活,网购作为一种新的消费方式,因其具有快捷、商品种类齐全、性价比高等优势而深受广大消费者认可.某网购公司统计了近五年在本公司网购的人数,得到如下的相关数据(其中x=1”表示2015年,x=2”表示2016年,依次类推;y表示人数)

x

1

2

3

4

5

y(万人)

20

50

100

150

180

1)试根据表中的数据,求出y关于x的线性回归方程,并预测到哪一年该公司的网购人数能超过300万人;

2)该公司为了吸引网购者,特别推出玩网络游戏,送免费购物券活动,网购者可根据抛掷骰子的结果,操控微型遥控车在方格图上行进. 若遥控车最终停在胜利大本营,则网购者可获得免费购物券500元;若遥控车最终停在失败大本营,则网购者可获得免费购物券200. 已知骰子出现奇数与偶数的概率都是,方格图上标有第0格、第1格、第2格、、第20格。遥控车开始在第0格,网购者每抛掷一次骰子,遥控车向前移动一次.若掷出奇数,遥控车向前移动一格(从)若掷出偶数遥控车向前移动两格(从),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。设遥控车移到第格的概率为,试证明是等比数列,并求网购者参与游戏一次获得免费购物券金额的期望值.

附:在线性回归方程中,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,梯形中,,过分别作,垂足分别为.,已知,将梯形沿同侧折起,得空间几何体,如图2.

(1)若,证明:平面

(2)在(1)的条件下,若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在上的函数,若对任何实数以及中的任意两数,恒有,则称为定义在上的函数.

1)证明函数是定义域上的函数;

2)判断函数是否为定义域上的函数,请说明理由;

3)若是定义域为的函数,且最小正周期为,试证明不是上的函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在区间上的最大值为,最小值为,记

1)求实数的值;

2)若不等式对任意恒成立,求实数的范围;

3)对于定义在上的函数,设,用任意的划分为个小区间,其中,若存在一个常数,使得恒成立,则称函数上的有界变差函数;

①试证明函数是在上的有界变差函数,并求出的最小值;

②写出是在上的有界变差函数的一个充分条件,使上述结论成为其特例;(不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定整数,数列每项均为整数,在中去掉一项,并将剩下的数分成个数相同的两组,其中一组数的和与另外一组数的和之差的最大值记为. 中的最小值称为数列的特征值.

)已知数列,写出的值及的特征值;

)若,当,其中时,判断的大小关系,并说明理由;

)已知数列的特征值为,求的最小值.

查看答案和解析>>

同步练习册答案