【题目】随着科学技术的飞速发展,网络也已经逐渐融入了人们的日常生活,网购作为一种新的消费方式,因其具有快捷、商品种类齐全、性价比高等优势而深受广大消费者认可.某网购公司统计了近五年在本公司网购的人数,得到如下的相关数据(其中“x=1”表示2015年,“x=2”表示2016年,依次类推;y表示人数):
x | 1 | 2 | 3 | 4 | 5 |
y(万人) | 20 | 50 | 100 | 150 | 180 |
(1)试根据表中的数据,求出y关于x的线性回归方程,并预测到哪一年该公司的网购人数能超过300万人;
(2)该公司为了吸引网购者,特别推出“玩网络游戏,送免费购物券”活动,网购者可根据抛掷骰子的结果,操控微型遥控车在方格图上行进. 若遥控车最终停在“胜利大本营”,则网购者可获得免费购物券500元;若遥控车最终停在“失败大本营”,则网购者可获得免费购物券200元. 已知骰子出现奇数与偶数的概率都是,方格图上标有第0格、第1格、第2格、…、第20格。遥控车开始在第0格,网购者每抛掷一次骰子,遥控车向前移动一次.若掷出奇数,遥控车向前移动一格(从到)若掷出偶数遥控车向前移动两格(从到),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。设遥控车移到第格的概率为,试证明是等比数列,并求网购者参与游戏一次获得免费购物券金额的期望值.
附:在线性回归方程中,.
【答案】(1),预计到2022年该公司的网购人数能超过300万人;
(2)约400元.
【解析】
(1)依题意,先求出,代入公式即可得到,,可得回归方程为,令,.所以预计到2022年该公司的网购人数能超过300万;
(2)遥控车移到第()格的情况是下列两种,而且也只有两种.
①遥控车先到第格,又掷出偶数,其概率为
②遥控车先到第格,又掷出奇数,其概率为
所以,即可证得是等比数列,
利用累加法求出数列的通项公式,即可求得失败和获胜的概率,从而计算出期望.
解:(1)
故 从而
所以所求线性回归方程为,
令,解得.
故预计到2022年该公司的网购人数能超过300万人
(2)遥控车开始在第0格为必然事件,,第一次掷骰子出现奇数,遥控车移到第一格,其概率为,即.遥控车移到第()格的情况是下列两种,而且也只有两种.
①遥控车先到第格,又掷出奇数,其概率为
②遥控车先到第格,又掷出偶数,其概率为
所以,
当时,数列是公比为的等比数列
以上各式相加,得
(),
获胜的概率
失败的概率
设参与游戏一次的顾客获得优惠券金额为元,或
X的期望
参与游戏一次的顾客获得优惠券金额的期望值为,约400元.
科目:高中数学 来源: 题型:
【题目】《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.如图,四棱锥中,底面为平行四边形,,,底面.
(1)求证:平面.试判断四面体是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;
(2)若,求点A到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某次数学考试中,从甲乙两个班各抽取10名学生的数学成绩进行统计分析,两个班样本成绩的茎叶图如图所示.
(1)用样本估计总体,若根据茎叶图计算得甲乙两个班级的平均分相同,求的值;
(2)从样本中任意抽取3名学生的成绩,若至少有两名学生的成绩相同的概率大于,则该班成绩判断为可疑.试判断甲班的成绩是否可疑?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,圆,以坐标原点为极点,轴正半轴为极轴,直线的极坐标方程为,直线交圆于两点,为中点.
(1)求点轨迹的极坐标方程;
(2)若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着科学技术的飞速发展,网络也已经逐渐融入了人们的日常生活,网购作为一种新的消费方式,因其具有快捷、商品种类齐全、性价比高等优势而深受广大消费者认可.某网购公司统计了近五年在本公司网购的人数,得到如下的相关数据(其中“x=1”表示2015年,“x=2”表示2016年,依次类推;y表示人数):
x | 1 | 2 | 3 | 4 | 5 |
y(万人) | 20 | 50 | 100 | 150 | 180 |
(1)试根据表中的数据,求出y关于x的线性回归方程,并预测到哪一年该公司的网购人数能超过300万人;
(2)该公司为了吸引网购者,特别推出“玩网络游戏,送免费购物券”活动,网购者可根据抛掷骰子的结果,操控微型遥控车在方格图上行进. 若遥控车最终停在“胜利大本营”,则网购者可获得免费购物券500元;若遥控车最终停在“失败大本营”,则网购者可获得免费购物券200元. 已知骰子出现奇数与偶数的概率都是,方格图上标有第0格、第1格、第2格、…、第20格。遥控车开始在第0格,网购者每抛掷一次骰子,遥控车向前移动一次.若掷出奇数,遥控车向前移动一格(从到)若掷出偶数遥控车向前移动两格(从到),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。设遥控车移到第格的概率为,试证明是等比数列,并求网购者参与游戏一次获得免费购物券金额的期望值.
附:在线性回归方程中,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,梯形中,,过分别作,,垂足分别为、.,,已知,将梯形沿,同侧折起,得空间几何体,如图2.
(1)若,证明:平面;
(2)在(1)的条件下,若,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是定义在上的函数,若对任何实数以及中的任意两数、,恒有,则称为定义在上的函数.
(1)证明函数是定义域上的函数;
(2)判断函数是否为定义域上的函数,请说明理由;
(3)若是定义域为的函数,且最小正周期为,试证明不是上的函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数在区间上的最大值为,最小值为,记;
(1)求实数、的值;
(2)若不等式对任意恒成立,求实数的范围;
(3)对于定义在上的函数,设,,用任意的将划分为个小区间,其中,若存在一个常数,使得恒成立,则称函数为上的有界变差函数;
①试证明函数是在上的有界变差函数,并求出的最小值;
②写出是在上的有界变差函数的一个充分条件,使上述结论成为其特例;(不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定整数,数列、、、每项均为整数,在中去掉一项,并将剩下的数分成个数相同的两组,其中一组数的和与另外一组数的和之差的最大值记为. 将、、、中的最小值称为数列的特征值.
(Ⅰ)已知数列、、、、,写出、、的值及的特征值;
(Ⅱ)若,当,其中、且时,判断与的大小关系,并说明理由;
(Ⅲ)已知数列的特征值为,求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com