精英家教网 > 高中数学 > 题目详情

【题目】已知若椭圆)交轴于两点,点是椭圆上异于的任意一点,直线分别交轴于点,则为定值.

1)若将双曲线与椭圆类比,试写出类比得到的命题;

2)判定(1)类比得到命题的真假,请说明理由.

【答案】1)见解析;(2)命题为真命题,证明见解析.

【解析】

1)根据类比推理的基本原则可直接写出结果;

2)设,表示出直线方程后可求得点坐标,由此得到,同理得到,根据平面向量的数量积运算可构造方程,结合点在双曲线上可化简得到结果.

1)类比得命题:若双曲线轴于两点,点是双曲线上异于的任意一点,直线分别交轴于点,则为定值.

2)在(1)中类比得到的命题为真命题,证明如下:

不妨设,则

∴直线方程为.

,则,∴点坐标为.

,∴.

同法可求得:.

.

又∵,∴.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数x>2),若恒成立,则整数k的最大值为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现计划用两张铁丝网在一片空地上围成一个梯形养鸡场,已知两段是由长为的铁丝网折成,两段是由长为的铁丝网折成.设上底的长为,所围成的梯形面积为.

1)求S关于x的函数解析式,并求x的取值范围;

2)当x为何值时,养鸡场的面积最大?最大面积为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着全民健康运动的普及,每天一万步已经成为一种健康时尚,某学校为了教职工健康工作,在全校范围内倡导每天一万步健步走活动,学校界定一人一天走路不足4千步为健步常人,不少于16千步为健步超人,其他为健步达人,学校随机抽查了36名教职工,其每天的走步情况统计如下:

步数

人数

6

18

12

现对抽查的36人采用分层抽样的方式选出6

1)求从这三类人中各抽多少人;

2)现从选出的6人中随机抽取2人,求这两人健步类型相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线的焦点且斜率为1的直线交抛物线于两点,( )

A. 1 B. 2 C. 4 D. 8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某公园有三个警卫室有直道相连,千米,千米,千米.

(1)保安甲沿从警卫室出发行至点处,此时,求的直线距离;

(2)保安甲沿从警卫室出发前往警卫室,同时保安乙沿从警卫室出发前往警卫室,甲的速度为1千米/小时,乙的速度为2千米/小时,若甲乙两人通过对讲机联系,对讲机在公园内的最大通话距离不超过3千米,试问有多长时间两人不能通话?(精确到0.01小时)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机抽取某中学甲乙两班各6名学生,测量他们的身高(单位:cm),获得身高数据的茎叶图如下图.

甲班

2

9 1 0

8 2

18

17

16

乙班

0

0 1 4 7

3

(1)判断哪个班的平均身高较高, 并说明理由;

(2)计算甲班的样本方差;

(3)现从乙班这6名学生中随机抽取两名学生,求至少有一名身高不低于的学生被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,如果都是整数,就称点为整点,下列命题中正确的是_____________(写出所有正确命题的编号)

①存在这样的直线,既不与坐标轴平行又不经过任何整点

②如果都是无理数,则直线不经过任何整点

③直线经过无穷多个整点,当且仅当经过两个不同的整点

④直线经过无穷多个整点的充分必要条件是:都是有理数

⑤存在恰经过一个整点的直线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,圆,直线与椭圆交于两点,与圆相切与点,且为线段的中点,若这样的直线4条,则的取值范围为______.

查看答案和解析>>

同步练习册答案