精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面为直角梯形,,,的中点,,平面平面.

(1)求证:平面平面;

(2)记点到平面的距离为,点到平面的距离为,求的值.

【答案】1)详见解析;(2

【解析】

1)首先根据等边三角形的性质证得,再证得,由此证得平面,结合证得平面,进而证得平面平面.

2)建立空间直角坐标系,利用向量法计算出,由此求得的值.

1)因为三角形为等边三角形,,所以.因为底面为直角梯形,的的中点,,所以四边形是正方形,所以,因为,所以平面.因为,所以平面,由于平面,所以平面平面.

2)由(1)知两两垂直,建立如图所示的空间直角坐标系,不妨设,则..

设平面的法向量为,则,取.所以.

设平面的法向量为,则,取.所以.

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点在椭圆上,过点轴于点

(1)求线段的中点的轨迹的方程

(2)设两点在(1)中轨迹上,点,两直线的斜率之积为,且(1)中轨迹上存在点满足,当面积最小时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某房地产公司新建小区有AB两种户型住宅,其中A户型住宅每套面积为100平方米,B户型住宅每套面积为80平方米,该公司准备从两种户型住宅中各拿出12套销售给内部员工,表是这24套住宅每平方米的销售价格:(单位:万元平方米):

房号

1

2

3

4

5

6

7

8

9

10

11

12

A户型

2.6

2.7

2.8

2.8

2.9

3.2

2.9

3.1

3.4

3.3

3.4

3.5

B户型

3.6

3.7

3.7

3.9

3.8

3.9

4.2

4.1

4.1

4.2

4.3

4.5

1)根据表格数据,完成下列茎叶图,并分别求出AB两类户型住宅每平方米销售价格的中位数;

A户型

B户型

2.

3.

4.

2)该公司决定对上述24套住房通过抽签方式销售,购房者根据自己的需求只能在其中一种户型中通过抽签方式随机获取房号,每位购房者只有一次抽签机会,小明是第一位抽签的员工,经测算其购买能力最多为320万元,抽签后所抽得住房价格在其购买能力范围内则确定购买,否则,将放弃此次购房资格,为了使其购房成功的概率更大,他应该选择哪一种户型抽签?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农科所为改良玉米品种,对已选出的一组玉米的茎高进行统计,获得茎叶图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.

抗倒伏

易倒伏

总计

矮茎

高茎

总计

1)请完成以上列联表,并判断是否可以在犯错误的概率不超过0.01的前提下,认为抗倒伏与玉米矮茎有关?

2)为改良玉米品种,现采用分层抽样的方法从抗倒伏的玉米中抽出5株,再从这5株玉米中选取2株进行杂交试验,则选取的植株均为矮茎的概率是多少?

参考公式:(其中)

参考数据:

0.10

0.05

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中错误的是( )

A.若命题为真命题,命题为假命题,则命题“”为真命题

B.命题“若,则”为真命题

C.命题“若,则”的否命题为“若,则

D.命题:,,则,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)mx-lnx-1m为常数).

1)若函数f(x)恰有1个零点,求实数m的取值范围;

2)若不等式mx-exf(x)+a对正数x恒成立,求实数a的最小整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1F2为椭圆E的左、右焦点,且|F1F2|2,点E.

1)求E的方程;

2)直线l与以E的短轴为直径的圆相切,lE交于AB两点,O为坐标原点,试判断O与以AB为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,a、b、c分别是角A、B、C的对边,向量=(2sinB,2-cos2B),=(2sin2( ),-1),.

(1)求角B的大小;

(2)若a= ,b=1,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,过焦点的直线与抛物线相交于两点,且当直线倾斜角为时,与抛物线相交所得弦的长度为8.

1)求抛物线的方程;

2)若分别过点两点作抛物线的切线,两条切线相交于点,点关于直线的对称点,判断四边形是否存在外接圆,如果存在,求出外接圆面积的最小值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案