精英家教网 > 高中数学 > 题目详情

【题目】已知.

1时,求的单调区间和最值;

2)①若对于任意的,不等式恒成立,求的取值范围;②求证:

【答案】1)减区间为,增区间为,最小值为,无最大值;(2)①;②证明见解析.

【解析】

1)将代入函数的解析式,求导,可知导函数在上为增函数,观察可知导函数的唯一零点为,进而得到函数的单调区间及最值;

2)①先推导出,由得出,然后证明出恒成立即可,即可得出

②利用①的结论及常见不等式容易得证.

1)当时,,则

易知单调递增,又,当时,,当时,.

所以,函数的减区间为,增区间为

函数的最小值为,无最大值;

2)①必要性:若,则当时,,不合乎题意,所以,必有.

,则

充分性:易知.

故只要证明恒成立即可,

,令

单调递减,在单调递增,则.

,因此,实数的取值范围是

②由①可知,要证,只需证

先证明不等式,构造函数

,令,可得.

时,;当时,.

所以,函数的减区间为,增区间为

所以,对任意的.

成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为实数,已知函数的导函数为,且.

1)求的值;

2)设为实数,若对于任意,不等式恒成立,且存在唯一的实数使得成立,求的值;

3)是否存在负数,使得是曲线的切线.若存在,求出的所有值:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校需从甲、乙两名学生中选一人参加物理竞赛,这两名学生最近5次的物理竞赛模拟成绩如下表:

第一次

第二次

第三次

第四次

第五次

学生甲的成绩(分)

80

85

71

92

87

学生乙的成绩(分)

90

76

75

92

82

1)根据成绩的稳定性,现从甲、乙两名学生中选出一人参加物理竞赛,你认为选谁比较合适?

2)若物理竞赛分为初赛和复赛,在初赛中有如下两种答题方案:方案1:每人从5道备选题中任意抽出1道,若答对,则可参加复赛,否则被淘汰;方案2:每人从5道备选题中任意抽出3道,若至少答对其中2道,则可参加复赛,否则被淘汰.若学生乙只会5道备选题中的3道,则学生乙选择哪种答题方案进入复赛的可能性更大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个不透明的盒子中关有蝴蝶、蜜蜂和蜻蜓三种昆虫共11只,现在盒子上开一小孔,每次只能飞出1只昆虫(假设任意1只昆虫等可能地飞出).若有2只昆虫先后任意飞出(不考虑顺序),则飞出的是蝴蝶或蜻蜓的概率是.

(1)求盒子中蜜蜂有几只;

(2)若从盒子中先后任意飞出3只昆虫(不考虑顺序),记飞出蜜蜂的只数为X,求随机变量X的分布列与数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面.

1)求证:.

2)若M为线段上的一点,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x2+1gx)=4x+1,的定义域都是集合A,函数fx)和gx)的值域分别为ST

1)若A[12],求ST

2)若A[0m]ST,求实数m的值

3)若对于集合A的任意一个数x的值都有fx)=gx),求集合A

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一颗骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b,设两条直线l1axby2l2x2y2平行的概率为P1,相交的概率为P2,则点P(36P136P2)与圆Cx2y21 098的位置关系是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,底面为平行四边形ABCD的四棱锥P-ABCD,EPC的中点.求证:PA∥平面BDE.(要求注明每一步推理的大前提、小前提和结论,并最终把推理过程用简略的形式表示出来)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,双曲线的两顶点为,虚轴两端点为,两焦点为,若以为直径的圆内切于菱形,切点分别为.

1)双曲线的离心率______

2)菱形的面积与矩形的面积的比值______.

查看答案和解析>>

同步练习册答案