精英家教网 > 高中数学 > 题目详情

【题目】设数列共有项,记该数列前中的最大项为,该数列后中的最小项为

1)若数列的通项公式为,求数列的通项公式;

2)若数列满足,求数列的通项公式;

3)试构造一个数列,满足,其中是公差不为零的等差数列,是等比数列,使得对于任意给定的正整数,数列都是单调递增的,并说明理由.

【答案】1;(2;(3

【解析】

试题(1)由题意得:因为单调递增,所以,所以.本小题目的引导阅读题意,关键在于确定数列单调性(2)本题是逆问题,关键仍是确定数列单调性:因为,所以,可得,又因为,所以单调递增,则,所以,可得是公差为2的等差数列,3)由上面两小题可知,构造数列为单调递增数列:等差数列的公差为正数,等比数列的首项为负,公比,若等比数列的首项为正,公比,由(1)知不满足数列是单调递增的

试题解析:(1)因为单调递增,所以

所以

2)根据题意可知,,因为,所以

可得,又因为,所以单调递增,

,所以,即

所以是公差为2的等差数列,

3)构造,其中

下证数列满足题意.

证明:因为,所以数列单调递增,

所以

所以

因为

所以数列单调递增,满足题意.

(说明:等差数列的首项任意,公差为正数,同时等比数列的首项为负,公比,这样构造的数列都满足题意.)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的定义域D,并判断的奇偶性;

2)如果当时,的值域是,求a的值;

3)对任意的m,是否存在,使得,若存在,求出t,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“团购”已经渗透到我们每个人的生活,这离不开快递行业的发展,下表是2013-2017年全国快递业务量(x亿件:精确到0.1)及其增长速度(y%)的数据

1)试计算2012年的快递业务量;

2)分别将2013年,2014年,…,2017年记成年的序号t12345;现已知yt具有线性相关关系,试建立y关于t的回归直线方程

3)根据(2)问中所建立的回归直线方程,估算2019年的快递业务量

附:回归直线的斜率和截距地最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查一款手机的使用时间,研究人员对该款手机进行了相应的测试,将得到的数据统计如下图所示:

并对不同年龄层的市民对这款手机的购买意愿作出调查,得到的数据如下表所示:

愿意购买该款手机

不愿意购买该款手机

总计

40岁以下

600

40岁以上

800

1000

总计

1200

1)根据图中的数据,试估计该款手机的平均使用时间;

2)请将表格中的数据补充完整,并根据表中数据,判断是否有999%的把握认为愿意购买该款手机市民的年龄有关.

参考公式:,其中

参考数据:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,的中点,.

(Ⅰ)求证:平面

(Ⅱ)异面直线所成角的余弦值为,求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高三年级某班50名学生期中考试数学成绩的频率分布直方图如图所示,成绩分组区间为:.其中abc成等差数列且.物理成绩统计如表.(说明:数学满分150分,物理满分100分)

分组

频数

6

9

20

10

5

1)根据频率分布直方图,请估计数学成绩的平均分;

2)根据物理成绩统计表,请估计物理成绩的中位数;

3)若数学成绩不低于140分的为“优”,物理成绩不低于90分的为“优”,已知本班中至少有一个“优”同学总数为6人,从此6人中随机抽取3人,记X为抽到两个“优”的学生人数,求X的分布列和期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:=1(a>b>0)点A、B分别是椭圆C的左顶点和上顶点直线AB与圆G:x2+y2(c是椭圆的半焦距)相离,P是直线AB上一动点过点P作圆G的两切线切点分别为M、N.

(1)若椭圆C经过两点求椭圆C的方程;

(2)当c为定值时求证:直线MN经过一定点E并求·的值(O是坐标原点);

(3)若存在点P使得△PMN为正三角形,试求椭圆离心率的取值范围..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线的极坐标方程为,曲线的极坐标方程为

(l)设为参数,若,求直线的参数方程;

2)已知直线与曲线交于,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在矩形ABCD中,AB4AD2ECD的中点,将△ADE沿AE折起,得到如图2所示的四棱锥D1ABCE,其中平面D1AE⊥平面ABCE.

(1)证明:BE⊥平面D1AE

(2)FCD1的中点,在线段AB上是否存在一点M,使得MF∥平面D1AE,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案