精英家教网 > 高中数学 > 题目详情
12.已知f(x)的定义域为R,且f(x+2)•[1-f(x)]=1+f(x),若f(1)=2-$\sqrt{3}$,求f(2003)的值.

分析 由已知可得f(x)是周期为8的周期函数,进而得到:f(2003)=f(3).

解答 解:∵f(x+2)•[1-f(x)]=1+f(x),f(1)=2-$\sqrt{3}$,
∴f(3)•[1-f(1)]=1+f(1),
∴f(3)=$\sqrt{3}$,
∴f(5)•[1-f(3)]=1+f(3),
∴f(5)=-2-$\sqrt{3}$,
∴f(7)•[1-f(5)]=1+f(5),
∴f(7)=-$\frac{\sqrt{3}}{3}$,
∴f(9)•[1-f(7)]=1+f(7),
∴f(9)=2-$\sqrt{3}$,

故f(x)是周期为8的周期函数,
∴f(2003)=f(3)=$\sqrt{3}$.

点评 本题考查的知识点是函数的周期性,函数求值,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.下列说法中不正确的是③④⑤(只需填写序号)
①设集合A=φ,则φ⊆A;
②若集合A={x|x2-1=0},B={-1,1},则A=B;
③在集合A到B的映射中,对于集合B中的任何一个元素y,在集合A中都有唯一的一个元素x与之对应;
④函数f(x)=$\frac{1}{x}$的单调减区间是(-∞,0)∪(0,+∞);
⑤设集合A={x|1<x<2},B={x|x<a},若A⊆B,则a>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知双曲线x2一y2=1.
(1)若直线l:y=$\frac{1}{2}$x-b交双曲线于A,B两点,且|AB|=$\frac{2\sqrt{35}}{3}$.求直线l方程:
(2)求以定点M(2,1)为中点的弦所在直线方程:
(3)思考以定点N(1,1)为中点<弦存在吗?(数形结合)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某城市现有人口100万,根据最近20年的统计资料,这个城市的人口的年自然增长率为0.8%,按照这个增长率计算,51年后这个城市的人口预计有150万(用代数式表示,并化简,精确到1年)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$过点$(1,\frac{3}{2})$,且离心率为$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)若椭圆C左顶点为A,动直线l过点P(4,0)且与椭圆C相交于D,E两点(不同于点A),求直线AD与直线AE的斜率之乘积.
(3)在(2)条件下,点D关于x轴的对称点记为F,证明:直线EF过定点,求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\left\{\begin{array}{l}{(a+1)^{x}-1,x≤1}\\{1+lo{g}_{a}x,x>1}\end{array}\right.$,(a>0且a≠1).
(1)当a=2时,求函数f(x)的零点;
(2)若函数f(x)的一个零点为2,求实数a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知0<a<1,化简$\sqrt{{lg}^{2}a-lg\frac{{a}^{2}}{10}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.两互相平行的直线分别经过A(2,3),B(-1,-1),并且各自绕A,B旋转,则两平行直线的距离d的取值范围是(0,5].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在直角坐标系xOy中,曲线M的参数方程为$\left\{\begin{array}{l}{x=sinθ+cosθ}\\{y=sin2θ}\end{array}\right.$(θ为参数),若以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线N的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$t(其中t为常数).当曲线N与曲线M只有一个公共点时,t的取值范围为$\left\{{t\left|{1-\sqrt{2}<t≤1+\sqrt{2}或t=-\frac{5}{4}}\right.}\right\}$.

查看答案和解析>>

同步练习册答案