精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中为自然对数的底数.

(1)函数的图象能否与轴相切?若能与轴相切,求实数的值;否则,请说明理由;

(2)若函数上单调递增,求实数能取到的最大整数值.

【答案】(1)见解析;(2)1.

【解析】试题分析】(1)依据题设条件运用导数的几何意义建立方程进行分析求解;(2)依据题设条件借助等比数列的求和公式及等差数列的求和公式进行求解:

(1)

假设函数的图象与轴相切于点,则有

由②可知,代入①中可得

,即

∴方程无解,

故无论取何值,函数的图象都不与轴相切.

(2)记

由题意知上恒成立.

,可得, 的必要条件是

,则

时, ,故

下面证明:当时,不等式恒成立.

,则

,则

时, 单调递增且

时, 单调递减且

∴存在唯一的使得,且当时, 单调递减;

时, 单调递增.

,∴,∴

从而恒成立,故能取得的最大整数为1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,证明:

(Ⅱ)当,且时,不等式成立,求实数的取值范围 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某正三棱柱的三视图如图所示,其中正(主)视图是边长为的正方形,该正三棱柱的表面积是( ).

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面内有n(n∈N*)条直线,其中任何两条不平行,任何三条不过同一点,若这n条直线把平面分成f(n)个平面区域,则f(3)=;f(n)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(文)已知矩形ABB1A1是圆柱体的轴截面,O、O1分别是下底面圆和上底面圆的圆心,母线长与底面圆的直径长之比为2:1,且该圆柱体的体积为32π,如图所示.

(1)求圆柱体的侧面积S的值;
(2)若C1是半圆弧 的中点,点C在半径OA上,且OC= OA,异面直线CC1与BB1所成的角为θ,求sinθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中, 的中点, .

(1)求证: 平面

(2)当时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:已知四棱锥P﹣ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,求证:

(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=x3+2x2﹣4x+5在[﹣4,1]上的最大值和最小值分别是(
A.13,
B.4,﹣11
C.13,﹣11
D.13,最小值不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形所在的平面与正方形所在的平面相互垂直,点的中点.

I)求证: 平面

II)求证:平面平面

查看答案和解析>>

同步练习册答案