精英家教网 > 高中数学 > 题目详情
18.若直线(a+1)x+ay=0与直线ax+2y=1垂直,则实数a=0或-3.

分析 对a分类讨论,利用两条直线相互垂直的条件即可得出.

解答 解:当a=0时,两条直线方程分别化为:x=0,2y=1,此时两条直线垂直,因此a=0满足条件.
当a≠0时,两条直线的斜率分别为-$\frac{a+1}{a}$,-$\frac{a}{2}$,而-$\frac{a+1}{a}$•(-$\frac{a}{2}$)=-1,此时a=-3.
综上可得:a=0或-3.
故答案为:0或-3.

点评 本题考查了两条直线相互垂直与斜率的关系、分类讨论,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.中国共产党第十八届中央委员会第五次全体会议认为,到二○二○年全面建成小康社会,是我们党确定的“两个一百年”奋斗目标的第一个百年奋斗目标.全会提出了全面建成小康社会新的目标要求:经济保持中高速增长,在提高发展平衡性、包容性、可持续性的基础上,到二○二○年国内生产总值和城乡居民人均收入比二0一0年翻一番,产业迈向中高端水平,消费对经济增长贡献明显加大,户籍人口城镇化率加快提高.
设从二0一一年起,城乡居民人均收入每一年比上一年都增长p%.下面给出了依据“到二0二0年城乡居民人均收入比二0一0年翻一番”列出的关于p的四个关系式:
①(1+p%)×10=2;
②(1+p%)10=2;
③lg(1+p%)=2;
④1+10×p%=2.
其中正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知圆x2+y2+2ax-2ay+2a2-4a=0(0<a≤4)的圆心为C,直线l:y=x+4.
(Ⅰ)写出该圆的圆心坐标及半径;
(Ⅱ)求直线l被圆C所截得弦长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设某等腰三角形的底角为α,顶角为β,且cosβ=$\frac{3}{5}$.
(Ⅰ)求sinα的值;
(Ⅱ)若函数f(x)=tanx在[-$\frac{π}{3}$,α]上的值域与函数g(x)=2sin(2x-$\frac{π}{3}$)在[0,m]上的值域相同,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知圆x2+y2+2x-2y+2a=0截直线x+y+2=0所得弦长为4,则实数a的值是(  )
A.-4B.-3C.-2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a=20.3,b=log0.23,c=log32,则a,b,c的大小关系是(  )
A.a<b<cB.c<b<aC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{a{x}^{3},x>0}\\{cosx,-\frac{π}{2}<x<0}\end{array}\right.$(a∈R),若f(f(-$\frac{π}{3}$))=1,则a的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,有一块半径为2的半圆形钢板,计划剪裁成等腰梯形ABCD的形状,它的下底AB是⊙O的直径,上底CD的端点在圆周上.设∠DAB=θ(0<θ<$\frac{π}{2}$),L为等腰梯形ABCD的周长.
(1)求周长L与θ的函数解析式;
(2)试问周长L是否存在最大值?若存在,请求出最大值,并指出此时θ的大小;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知定义在R上的奇函数f(x)满足:当x≥0时,f(x)=x3,若不等式f(-4t)>f(2m+mt2)对任意实数t恒成立,则实数m的取值范围是(  )
A.(-∞,-$\sqrt{2}$)B.(-$\sqrt{2}$,0)C.(-∞,0)∪($\sqrt{2}$,+∞)D.(-∞,-$\sqrt{2}$)∪($\sqrt{2}$,+∞)

查看答案和解析>>

同步练习册答案