精英家教网 > 高中数学 > 题目详情

(本题满分13分)本题共有2个小题,第1小题满分6分,第2小题满分7分.

已知椭圆()过点,其左、右焦点分别为,且

(1)求椭圆的方程;

(2)若是直线上的两个动点,且,则以为直径的圆是否过定点?请说明理由.

解:(1)设点的坐标分别为

,可得,    …………………2分

所以,…………………4分

所以椭圆的方程为.          ……………………………6分

(2)设的坐标分别为,则

,可得,即,  …………………8分

又圆的圆心为半径为

故圆的方程为,    

也就是,                 ……………………11分

,可得或2,

故圆必过定点.              ……………………13分

(另法:(1)中也可以直接将点坐标代入椭圆方程来进行求解;(2)中可利用圆C直径的两端点直接写出圆的方程)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本大题满分13分)本题共有2个小题,第1小题满分5分,第2小题满分8分.

如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,骨架把圆柱底面8等份,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).

(1)当圆柱底面半径取何值时,取得最大值?并求出该

最大值(结果精确到0.01平方米);

(2)在灯笼内,以矩形骨架的顶点为点,安装一些霓虹灯,当灯笼的底面半径为0.3米时,求图中两根直线所在异面直线所成角的大小(结果用反三角函数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(本大题满分13分)本题共有2个小题,第1小题满分5分,第2小题满分8分.

如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,骨架把圆柱底面8等份,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).

(1)当圆柱底面半径取何值时,取得最大值?并求出该

最大值(结果精确到0.01平方米);

(2)在灯笼内,以矩形骨架的顶点为点,安装一些霓虹灯,当灯笼的底面半径为0.3米时,求图中两根直线所在异面直线所成角的大小(结果用反三角函数表示)

查看答案和解析>>

科目:高中数学 来源:2011届福建厦门双十中学高三考前热身理数试卷 题型:解答题

(本小题满分13分)
已知数列满足,数列满足,数列
满足
(Ⅰ)求数列的通项公式;
(Ⅱ),试比较的大小,并证明;
(Ⅲ)我们知道数列如果是等差数列,则公差是一个常数,显然在本题的数列中,不是一个常数,但是否会小于等于一个常数呢,若会,请求出的范围,若不会,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建厦门双十中学高三考前热身理数试卷 题型:解答题

(本小题满分13分)

已知数列满足,数列满足,数列

满足

(Ⅰ)求数列的通项公式;

(Ⅱ),试比较的大小,并证明;

(Ⅲ)我们知道数列如果是等差数列,则公差是一个常数,显然在本题的数列中,不是一个常数,但是否会小于等于一个常数呢,若会,请求出的范围,若不会,请说明理由.

 

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分13分)

已知数列满足,数列满足,数列

满足

(Ⅰ)求数列的通项公式;

(Ⅱ),试比较的大小,并证明;

(Ⅲ)我们知道数列如果是等差数列,则公差是一个常数,显然在本题的数列中,不是一个常数,但是否会小于等于一个常数呢,若会,请求出的范围,若不会,请说明理由.

查看答案和解析>>

同步练习册答案