【题目】设函数.
(1)当时,求曲线在处的切线方程;
(2)当时,求函数的单调区间;
(3)在(2)的条件下,设函数,若对于,,使成立,求实数的取值范围.
【答案】(1)y=﹣2.(2)单调递增区间为(1,2);单调递减区间为(0,1)和(2,+∞).(3).
【解析】
(1)将a=2代入,对其求导,可得,的值,可得f(x)在x=1处的切线方程;;
(2)将代入,对其求导,由导数性质可得函数f(x)的单词区间;
(3)由(2)可得的最小值为,又,
分,,三种情况讨论,结合对,,使成立,可得b的取值范围.
解:(1)将a=2代入函数,可得
可得:,,,
故曲线f(x)在x=1处的切线方程为y=﹣2.
(2),
令可得1<x<2;
令可得0<x<1或x>2;
因此f(x)的单调递增区间为(1,2);
单调递减区间为(0,1)和(2,+∞).
(3)f(x)在(1,2)上单调递增,因此f(x)的最小值为f(1).
又g(x),
①当b<0时,g(x)在[0,1]上单调递增,则矛盾.
②当0≤b≤1时,,得.
③当b>1时,,解得b>1.
因此,综上所述b的取值范围是.
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,求函数的零点;
(2)当,求函数在上的最大值;
(3)对于给定的正数a,有一个最大的正数,使时,都有,试求出这个正数,并求它的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥的底面ABCD是菱形,平面ABCD,,,F,G分别为PD,BC中点,.
(Ⅰ)求证:平面PAB;
(Ⅱ)求三棱锥的体积;
(Ⅲ)求证:OP与AB不垂直.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为.
(Ⅰ)设表示一辆车从甲地到乙地遇到红灯的个数,求随机变量的分布列和数学期望;
(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业经过短短几年的发展,员工近百人.不知何因,人员虽然多了,但员工的实际工作效率还不如从前.年月初,企业领导按员工年龄从企业抽选位员工交流,并将被抽取的员工按年龄(单位:岁)分为四组:第一组,第二组,第三组,第四组,且得到如下频率分布直方图:
(1)求实数的值;
(2)若用简单随机抽样方法从第二组、第三组中再随机抽取人作进一步交流,求“被抽取得人均来自第二组”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“勾股定理”在西方被称为“毕达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形.现随机地向大正方形内部区域投掷飞镖,若飞镖落在小正方形区域的概率是,则直角三角形的两条直角边长的比是(长边:短边)( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中, ,动点满足:以为直径的圆与轴相切.
(1)求点的轨迹方程;
(2)设点的轨迹为曲线,直线过点且与交于两点,当与的面积之和取得最小值时,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com