精英家教网 > 高中数学 > 题目详情

【题目】将一个半径适当的小球放入如图所示的容器自上方的入口处,小球自由下落,小气在下落的过程中,将遇到黑色障碍物3次,最后落入A袋或B袋中,已知小球每次遇到障碍物时,向左、右两边下落的概率分别是
(1)分别求出小球落入A袋和B袋中的概率;
(2)在容器 入口处依次放入4个小球,记ξ为落入B袋中的小球个数,求ξ的分布列和数学期望.

【答案】
(1)

解:记“小球落入A袋中”为事件M”,小球落入B袋中”为事件N,则事件M的对立事件N,

而小球落入A袋中当且仅当小球一直向左落下或一直向右落下,

故P(M)= + =

从而P(N)=1﹣P(M)=1﹣ =


(2)

解:显然,随机变量ξ的所有可能的取值为0,1,2,3,4

且B(4, ),

故P(ξ=0)= ×( 0×( 4=

P(ξ=1)= ×( 1×( 3=

P(ξ=2)= ×( 2×( 2=

P(ξ=3)= ×( 3×( 1=

P(ξ=4)= ×( 4×( 0=

则ξ的分布列为:

ξ

0

1

2

3

4

P

故ξ的数学期望为E(ξ)=4× =


【解析】(1)设出“小球落入A袋中”为事件M”,小球落入B袋中”为事件N,则事件M的对立事件N,而小球落入A袋中当且仅当小球一直向左落下或一直向右落下,运用对立事件求解即可.(2)确定随机变量ξ的所有可能的取值为0,1,2,3,4判断出二项分布,得出B(4, ),运用概率公式求解即可.
【考点精析】掌握离散型随机变量及其分布列是解答本题的根本,需要知道在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的外接球半径为( )

A.2
B.
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a为实数,f(x)=(x2﹣4)(x﹣a).
(1)求导数f′(x);
(2)若f′(﹣1)=0,求f(x)在[﹣2,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M={1,2,3},N={1,2,3,4},定义函数f:M→N.若点A(1,f(1))、B(2,f(2))、C(3,f(3)),△ABC的外接圆圆心为D,且 ,则满足条件的函数f(x)有(
A.6个
B.10个
C.12个
D.16个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为(﹣1,1),且同时满足下列条件:f(1﹣a)+f(1﹣a2)<0.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着人们对环境关注度的提高,绿色低碳出行越来越受到市民重视. 为此贵阳市建立了公共自行车服务系统,市民凭本人二代身份证到自行车服务中心办理诚信借车卡借车,初次办卡时卡内预先赠送20积分,当积分为0时,借车卡将自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分收费,具体扣分标准如下:

①租用时间不超过1小时,免费;

②租用时间为1小时以上且不超过2小时,扣1分;

③租用时间为2小时以上且不超过3小时,扣2分;

④租用时间超过3小时,按每小时扣2分收费(不足1小时的部分按1小时计算).

甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过1小时的概率分别是0.4和0.5;租用时间为1小时以上且不超过2小时的概率分别是0.4和0.3.

(1)求甲、乙两人所扣积分相同的概率;

(2)设甲、乙两人所扣积分之和为随机变量,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,M是正方体ABCD﹣A1B1C1D1的棱DD1的中点,给出下列命题
①过M点有且只有一条直线与直线AB、B1C1都相交;
②过M点有且只有一条直线与直线AB、B1C1都垂直;
③过M点有且只有一个平面与直线AB、B1C1都相交;
④过M点有且只有一个平面与直线AB、B1C1都平行.
其中真命题是(

A.②③④
B.①③④
C.①②④
D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,矩形ABCD的边AB=m,BC=4,PA⊥平面ABCD,PA=3,现有数据:
;②m=3;③m=4;④ .若在BC边上存在点Q(Q不在端点B、C处),使PQ⊥QD,则m可以取(

A.①②
B.①②③
C.②④
D.①

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱柱侧棱与底面垂直, , 分别是的中点.

1求证: 平面

2求证:平面平面

查看答案和解析>>

同步练习册答案