精英家教网 > 高中数学 > 题目详情

【题目】若关于x的方程(x﹣1)4+mx﹣m﹣2=0各个实根x1 , x2…xk(k≤4,k∈N*)所对应的点(xi),(i=1,2,3…k)均在直线y=x的同侧,则实数m的取值范围是(  )
A.(﹣1,7)
B.(﹣∞,﹣7)U(﹣1,+∞)
C.(﹣7,1)
D.(﹣∞,1)U(7,+∞)

【答案】D
【解析】方程的根显然x≠1,原方程等价于(x﹣1)3+m=
原方程的实根是曲线y=(x﹣1)3+m与曲线y=的交点的横坐标.
而曲线y=(x﹣1)3+m是由曲线y=(x﹣1)3向上或向下平移|m|个单位而得到的,
若交点(xi,)(i=1,2,…,k)均在直线y=x的同侧,
因直线y=x与y=交点为:(﹣1,﹣1),(2,2);
所以结合图象可得,

由(2﹣1)3+m=2,解得:m=1,由(﹣1﹣1)3+m=﹣1,解得:m=7
∴m<1或m>7,
故选:D.
【考点精析】关于本题考查的函数的零点与方程根的关系,需要了解二次函数的零点:(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点;(2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点;(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线方程为

(1)求的值;

(2)求上的单调区间;

(3)求上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知在等腰梯形中,=60°,沿折成三棱柱

(1)若分别为的中点,求证:∥平面

(2)若,求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,kR.

(I)求函数f(x)的单调区间;

(II)k>0时,若函数f(x)在区间(1,2)内单调递减,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列

满足:1(k=1,2,…,n-1).

对任意i,j,都存在s,t,使得,其中i,j,s,t{1,2,…,n}且两两不相等.

(I)若m=2,写出下列三个数列中所有符合题目条件的数列的序号;

1,1,1,2,2,2; 1,1,1,1,2,2,2,2; 1,1,1,1,1,2,2,2,2

(II)记.若m=3,求S的最小值;

(III)若m=2018,求n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了提高学生的身体素质,决定组建学校足球队,学校为了解学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右3个小组的频率之比为1:2:3,其中第2小组的频数为12.
(1)求该校报名学生的总人数;
(2)从报名的学生中任选3人,设X表示体重超过60kg的学生人数,求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(a、b∈R,a、b为常数),且y=f(x)在x=1处切线方程为y=x﹣1.
(1)求a,b的值;
(2)设h(x)= , k(x)=2h′(x)x2 , 求证:当x>0时,k(x)<+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC面积S和三边a,b,c满足:S=a2﹣(b﹣c)2 , b+c=8,则△ABC面积S的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种树苗栽种时高度为A(A为常数)米,栽种n年后的高度记为f(n).经研究发现f(n)近似地满足 f(n),其中ab为常数,n∈Nf(0)A.已知栽种3年后该树木的高度为栽种时高度的3倍.

1)栽种多少年后,该树木的高度是栽种时高度的8倍;

2)该树木在栽种后哪一年的增长高度最大.

查看答案和解析>>

同步练习册答案