A. | 12 | B. | 8$\sqrt{3}$ | C. | 8$\sqrt{2}$ | D. | 8 |
分析 将sinA+cosA=$\frac{\sqrt{3}-1}{2}$两边平方,可解得sin2A=-$\frac{\sqrt{3}}{2}$,结合范围0<A<π,可得:cosA=-$\frac{1}{2}$,由正弦定理化简3sinB=5sinC,可得:3b=5c①,根据余弦定理可得49=b2+c2+bc②,由①②联立可解得b,c的值,从而得解.
解答 解:∵sinA+cosA=$\frac{\sqrt{3}-1}{2}$,
∴两边平方,可得:1+sin2A=$\frac{4-2\sqrt{3}}{4}$,解得:sin2A=-$\frac{\sqrt{3}}{2}$,
∵0<A<π,0<2A<2π,
∴解得:A=$\frac{2π}{3}$或$\frac{5π}{6}$(由sinA+cosA=$\frac{\sqrt{3}-1}{2}$舍去),可得:cosA=-$\frac{1}{2}$,
∵3sinB=5sinC,可得:3b=5c①,
∴由a=7,根据余弦定理可得:49=b2+c2-2bccosA,
∴49=b2+c2+bc②,
∴由①②可解得:b=5,c=3,b+c=8.
故选:D.
点评 本题主要考查了二倍角的正弦函数公式,正弦定理,余弦定理的综合应用,熟练掌握和灵活应用相关公式是解题的关键,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 2cm | B. | 3cm | C. | 2.5cm | D. | 5cm |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com