精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率是椭圆上一点.

1)求椭圆的方程;

2)若直线的斜率为,且直线交椭圆两点,点关于原点的对称点为,点是椭圆上一点,判断直线的斜率之和是否为定值,如果是,请求出此定值,如果不是,请说明理由.

【答案】12)是定值,0

【解析】

1)根据题意可知,解方程组即可求出,即可求解.

2)设直线的方程为,代入椭圆,设点,可得点,利用韦达定理以及两点求斜率化简即可求解.

1)由题意知

又离心率,所以

于是有

解得

所以椭圆的方程为

2)由于直线的斜率为.可设直线的方程为

代入椭圆,可得

由于直线交椭圆两点,

所以

整理解得

设点,由于点与点关于原点对称,

故点,于是有

设直线的斜率分别为,由于点

于是有

故直线的斜率之和为0,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)[选修4-4,极坐标与参数方程选讲]

在直角坐标系x0y中,曲线C1的参数方程为(为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为p=4sin9

(1)求曲线C1的普通方程和C2的直角坐标方程;

(Ⅱ)已知曲线C3的极坐标方程为=α,(0<α<x,p∈R),点A是曲线C3与C1的交点,点B是曲线C3与C2的交点,且A,B均异于原点O,且|AB|=4,求实数α的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献,这5部专著中有3部产生于汉、魏、晋、南北朝时期,某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC-A1B1C1中,∠BAC=120°,AC=AB=2,AA1=3.

(1)求三棱柱ABC-A1B1C1的体积;

(2)若M是棱BC的一个靠近点C的三等分点,求二面角A-A1M-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆A:(x+1)2+y2=16,圆C过点B(1,0)且与圆A相切,设圆心C的轨迹为曲线E

(Ⅰ)求曲线E的方程;

(Ⅱ)过点B作两条互相垂直的直线l1l2,直线l1E交于MN两点,直线l2与圆A交于PQ两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求的单调区间;

(2)若有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点的序列,其中.是线段的中点,是线段的中点,……,是线段的中点,…)

1)写出之间的关系

2)设,计算,由此推测数列的通项公式,并且加以证明;

3)求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知如图1直角梯形的中点,沿将梯形折起(如图2),使平面平面.

1)证明平面

2)在线段上是否存在点,使得平面与平面所成的锐二面角的余弦值为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人做下面的游戏:有一个由两个同轴圆柱组成的有盖容器,如图,里面的实心圆柱底面半径为,外面的圆柱面的底面半径为容器的高为。在容器内放入个半径为且质地相同的小球,其中红、黄、蓝色各个,随意翻动容器,然后将容器直立在桌面上。当小球全部停止后,如果有两个颜色相同的小球相邻,则甲胜,否则乙胜。那么,甲胜的概率为()。

A. B. C. D.

查看答案和解析>>

同步练习册答案