精英家教网 > 高中数学 > 题目详情
下列四种说法:
①命题“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1≤3x”;
②设p、q是简单命题,若“p∨q”为假命题,则“?p∧?q”为真命题;
③若p是q的充分不必要条件,则?p是?q的必要不充分条件;
④把函数y=sin(-2x)(x∈R)的图象上所有的点向右平移
π
8
个单位即可得到函数y=sin(-2x+
π
4
)
(x∈R)的图象.其中所有正确说法的序号是
 
考点:命题的真假判断与应用,特称命题
专题:简易逻辑
分析:利用命题的否定判断①的正误;复合命题的真假判断②的正误;充要条件判断③的正误;三角函数图象的平移判断④的正误;
解答: 解:对于①,命题“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1≤3x”;满足命题的否定形式,所以①正确.
对于②,设p、q是简单命题,若“p∨q”为假命题,说明两个命题都是假命题,命题的否定是真命题,则“?p∧?q”为真命题;所以②正确.
对于③,若p是q的充分不必要条件,则?p是?q的必要不充分条件;满足充要条件的关系,所以③正确;
对于④,把函数y=sin(-2x)(x∈R)的图象上所有的点向右平移
π
8
个单位即可得到函数y=sin(-2x+
π
4
)
(x∈R)的图象.符号平移原则,所以④正确;
故答案为:①②③④.
点评:本题考查命题的子啊的判断,特称命题与全称命题的否定关系,充要条件以及复合命题的真假,三角函数图象的平移,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=loga(x+b)(a>0且a≠1)的图象过点(2,1),其反函数的图象过点(2,8),则a+b等于.(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:2x2-3x+1≤0,q:x2-(2a+1)x+a(a+1)≤0
(1)若a=
1
2
,且p∧q为真,求实数x的取值范围.
(2)若p是q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=atanx-bcosx+4(其中以a、b为常数且ab≠0),如果f(3)=5,则f(2013π-3)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=a-x和函数y=loga(-x)(a>0,且a≠0)的图象画在同一个坐标系中,得到的图象只可能是下面四个图象中的(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={x|x2-7x+10<0},集合B={x|
1
2
<2x<8},则A∩B=(  )
A、(-1,3)
B、(-1,5)
C、(2,5)
D、(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三角形的三边长分别为5,7,8,则该三角形最大角与最小角之和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知R是实数集,集合P={x|y=ln(x2+2014x-2015)},Q={y|y=
-x2+2x+3
},则(∁RP)∪Q(  )
A、(0,1]
B、[0,1]
C、(-2015,1]
D、[-2015,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等比数列,且a1+a2+a3=-6,且a1•a2•a3=64,(|q|>1)
(1)求{an}的通项公式;
(2)令bn=(2n+1)•an,求数列{bn}的前n项和的公式.

查看答案和解析>>

同步练习册答案