精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数f(x)=2x+
1
2x

(1)判断f(x)为奇偶性;
(2)证明f(x)函数在[0,+∞)上单调递增.
(1)?x∈R,则f(-x)=2-x+
1
2-x
=
1
2x
+2x
=f(x),
∴函数f(x)是偶函数.
(2)?0≤x1<x2,则f(x1)-f(x2)=2x1+
1
2x1
-(2x2+
1
2x2
)
=(2x1-2x2)
2x1+x2-1
2x1+x2

∵0≤x1<x2
2x12x22x1+x220=1
∴f(x1)-f(x2)<0,
∴f(x1)<f(x2).
∴f(x)函数在[0,+∞)上单调递增.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

给出下列四个命题,其中真命题为______.
①“?x0∈R,使得x02+1>3x0”的否定是“?x∈R,都有x2+1≤3x”;
②“m=-2”是“直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的必要不充分条件;
③设圆x2+y2+Dx+Ey+F=0(D2+E2-4F>0)与坐标轴有4个交点,分别为A(x1,0),B(x2,0),C(0,y1),D(0,y2),则x1x2-y1y2=0;
④函数f(x)=sinx-x的零点个数有2个.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列命题:
①已知等比数列{an}的首项为a1,公比为q,则其前n项和Sn=
a1(1-qn)
1-q
(n∈N*);
②△ABC的内角A,B,C的对边分别为a,b,c,则存在△ABC使得
a
cosA
=
b
cosB
=
c
cosC

③函数f(x)=
x2+4
+
1
x2+4
(x∈R)的最小值为2.
④在一个命题的四种形式中,真命题的个数为0或2或4
其中正确命题的序号是______.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正方体ABCD-A1B1C1D1中,长度为定值的线段EF在线段B1D1上滑动,现有五个命题如下:
①AC⊥BE;
②EF平面A1BD;
③直线AE与BF所成角为定值;
④直线AE与平面BD1所成角为定值;
⑤三棱锥A-BEF的体积为定值.
其中正确命题序号为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=logm
1+x
x-1
(其中m>0且m≠1).
(1)判断函数f(x)的奇偶性,并加以证明;
(2)当0<m<1时,判断函数f(x)在区间(1,+∞)上的单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以下四个判断,正确的是(  )
A.“5是10的约数且是8的约数”是真命题
B.命题“2≥2”是真命题
C.“若a,b是实数,则a>b>0是a2>b2”的充分必要条件
D.命题p:“三边对应相等的两个三角形全等”,那么p的逆否命题是假命题

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列有关命题的说法正确的有(  )
①命题“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0”;
②“x=1”是“x2-3x+2=0”的充分不必要条件;
③若p∧q为假命题,则p、q均为假命题;
④若“p∨q”为假命题,则“?p∧?q”为真命题.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义“正对数”:ln+x=
0,0<x<1
lnx,x≥1
,现有四个命题:
①若a>0,b>0,则ln+(ab)=bln+a
②若a>0,b>0,则ln+(ab)=ln+a+ln+b
③若a>0,b>0,则ln+(
a
b
)≥ln+a-ln+b

④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2
其中正确的命题有(  )
A.①③④B.①②③C.①②④D.②③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

x0是函数f(x)=2sinx-πlnx(x∈(O,π))的零点,x1<x2?,则
①x0∈(1,e);
②x0∈(e,π);
③f(x1)-f(x2)<0;
④f(x1)-f(x2)>0.
其中正确的命题为(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

同步练习册答案