【题目】已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为.
(1)求椭圆的标准方程;
(2)已知圆,直线.试证:当点在椭圆上运动时,直线与圆恒相交,并求直线被圆所截得弦长的取值范围.
科目:高中数学 来源: 题型:
【题目】某集团公司计划从甲分公司中的3位员工、、和乙分公司中的3位员工、、选择2位员工去国外工作.
(1)若从这6名员工中任选2名,求这2名员工都是甲分公司的概率;
(2)若从甲分公司和乙分公司中各任选1名员工,求这2名员工包括但不包括的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】圆.
(1)若圆与轴相切,求圆的方程;
(2)已知,圆与轴相交于两点(点在点的左侧).过点任作一条与轴不重合的直线与圆相交于两点.问:是否存在实数,使得?若存在,求出实数的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的离心率为,以原点为圆心,椭圆的长半轴为半径的圆与直线相切.
(1)求椭圆的标准方程;
(2)已知点, 为动直线与椭圆的两个交点,问:在轴上是否存在点,使为定值?若存在,试求出点的坐标和定值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,且,向量, .
(1)求函数的解析式,并求当时, 的单调递增区间;
(2)当时, 的最大值为5,求的值;
(3)当时,若不等式在上恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与PM2.5的数据如下表:
时间 | 周一 | 周二 | 周三 | 周四 | 周五 |
车流量×(万辆) | 50 | 51 | 54 | 57 | 58 |
PM2.5的浓度(微克/立方米) | 60 | 70 | 74 | 78 | 79 |
(1)根据上表数据,用最小二乘法求出y关于x的线性回归方程;
(2)若周六同一时间段的车流量是25万辆,试根据(1)求出的线性回归方程,预测此时PM2.5的浓度为多少(保留整数)?
参考公式:由最小二乘法所得回归直线的方程是:,其中,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数f(x)若存在x0∈R,f(x0)=x0成立,则称x0为f(x)的不动点.已知f(x)=ax2+(b+1)x+b-1(a≠0).
(1)当a=1,b=-2时,求函数f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;
(3)在(2)的条件下,若y=f(x)图象上A,B两点的横坐标是函数f(x)的不动点,且A,B两点关于直线y=kx+对称,求b的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验将只小鼠随机分成、两组,每组只,其中组小鼠给服甲离子溶液,组小鼠给服乙离子溶液每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比根据试验数据分别得到如图所示的直方图:
根据频率分布直方图估计,事件:“乙离子残留在体内的百分比不高于”发生的概率.
(1)根据所给的频率分布直方图估计各段频数;
(附:频数分布表)
组实验甲离子残留频数表 | |||
组实验乙离子残留频数表 | |||
(2)请估计甲离子残留百分比的中位数,请估计乙离子残留百分比的平均值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com