精英家教网 > 高中数学 > 题目详情
20.已知圆的一般方程为x2+y2-2x+4y+4=0.
(1)写出该圆的圆心坐标和半径;
(2)求过该圆的圆心且倾斜角为$\frac{3π}{4}$的直线方程.

分析 (1)把所给的圆的一般方程化为标准方程,求出圆心坐标和半径.
(2)先求出直线的斜率为-1,再由点斜式求得要求直线的方程.

解答 解:(1)圆的一般方程为x2+y2-2x+4y+4=0,即 (x-1)2+(y+2)2 =1,
故圆心的坐标为(1,-2),半径为1.
(2)由题意可得所求的直线的斜率为tan$\frac{3π}{4}$=-1,由点斜式求得要求直线的方程为 y+2=-1(x-1),
即 x+y+1=0.

点评 本题主要考查圆的一般方程和标准方程,用点斜式求直线的方程,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=\left\{\begin{array}{l}x-1,x≥1\\-x+1,x<1\end{array}\right.$.
(1)在给定的直角坐标系中作出函数f(x)的图象;
(2)求满足方程f(x)=4的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.“a≠2”是直线ax+2y=3与直线x+(a-1)y=1相交的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知命题p:x2-ax+1=0有两个实根,q:函数y=x2+ax+b在[1,+∞)上为增函数,若命题“p∧q”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在三棱锥P-ABC中,平面PAC⊥平面ABC,PA⊥BC,AB⊥AC,PA=1,BC=2.D、E、F分别是棱PA、PB、PC的中点,连接DE、DF、EF.
(1)求证:PA⊥平面ABC;
(2)求三棱锥P-ABC的体积最大值;
(3)当三棱锥P-ABC的体积取最大值时,求证:平面AEF⊥平面PEF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在极坐标系中,已知圆C经过点P($\sqrt{2}$,$\frac{π}{4}$),圆心为直线$ρsin(θ-\frac{π}{3})$=-$\frac{\sqrt{3}}{2}$与极轴的交点,求圆C的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知A,B分别为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右顶点,P是C上一点,且直线AP,BP的斜率之积为2,则C的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=log2(2|x+1|+|2x+m|-m)
(I)当m=6时,求函数f(x)的定义域;
(Ⅱ)当函数f(x)的值域为R时,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx+ax2,g(x)=$\frac{1}{x}$+x+b,且直线y=-$\frac{1}{2}$是函数f(x)的一条切线,求a的值.

查看答案和解析>>

同步练习册答案