精英家教网 > 高中数学 > 题目详情
15.给定函数①$y={x^{\frac{1}{2}}}$,②$y=x+\frac{1}{x}$,③y=|x-1|,④y=2x+1,其中在区间(0,1)上单调递减的函数序号是(  )
A.①②B.②③C.③④D.①④

分析 对于①④可以看出,x增大时,y增大,从而根据增函数的定义知函数①④在(0,1)上单调递增;对于③x∈(0,1),从而y=|x-1|=-x+1,根据一次函数的单调性便知该函数单调递减,对于②可以根据单调性的定义进行判断.

解答 解:①④显然在(0,1)上单调递增;
∴②③在(0,1)上单调递减.
故选:B.

点评 考查增函数的定义,根据增函数的定义判断一个函数为增函数的方法,以及指数函数的单调性,排除法做选择题的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.集合A={m+$\sqrt{3}$n|m2-3n2=1,且m,n∈Z},试求一个属于A的元素a,再求和$\frac{a}{2+\sqrt{3}}$,并判断它们是否属于A?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=${(\frac{4}{3})}^{-{x}^{2}+2x-3}$的单调增区间(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知tanα=2,则$\frac{sin2α}{si{n}^{2}α+sinαcosα-cos2α-1}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列四个函数中,函数值的最小值为2的是(  )
A.y=x+$\frac{1}{x}$B.y=sinx+$\frac{1}{sinx}({0<x<\frac{π}{2}})$
C.y=3x+3-xD.y=lgx+$\frac{1}{lgx}({1<x<10})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.对于给定的正数K,定义函${f_K}(x)=\left\{\begin{array}{l}f(x),f(x)≤K\\ K,f(x)>K\end{array}\right.$.已知函数$f(x)={(\frac{1}{3})^{{x^2}-4x}}(0≤x<5)$,对其定义域内的任意x,恒有fk(x)=f(x),则(  )
A.K的最小值为$\frac{1}{243}$B.K的最大值为$\frac{1}{243}$C.K的最小值为81D.K的最大值为81

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数$f(x)=x+\frac{p}{x-1}$(p为常数,且p>0),若f(x)在(1,+∞)上的最小值为4,则实数p的值为(  )
A.2B.$\frac{9}{4}$C.4D.$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知点P是⊙O:x2+y2=9上的任意一点,过P作PD垂直x轴于D,动点Q满足$\overrightarrow{DQ}=\frac{2}{3}\overrightarrow{DP}$.
(Ⅰ)求动点Q的轨迹方程;
(Ⅱ)动点Q的轨迹上存在两点M、N,关于点E(1,1)对称,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.sin75°cos30°-sin15°sin150°的值等于(  )
A.1B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案