精英家教网 > 高中数学 > 题目详情

【题目】根据下列关系式,算出数列的前4项,然后猜想它的通项,并用数学归纳法证明你的猜想.

1

2

3.

【答案】1,证明见解析; 2,证明见解析; 3,证明见解析.

【解析】

分别求出数列的前几项,猜测数列的通项公式,利用数学归纳法,作出证明即可.

1)由

,则;令,则;令,则

由此可猜测数列的通项公式为:

证明如下:

①当时,,显然成立;

②假设时,结论成立,即

则当时,

即当时也成立,

由①②可得都成,即.

2)由

时,,即,即

时,,即,即

时,,即,即

猜测数列的通项公式为:

证明如下:

①当时,,显然成立;

②假设时,结论成立,即

则当时,,且

两式相减可得,即

整理得

即当时也成立,

由①②可得都成,即.

3)由

,可得,即,因为,则

,可得,即,解得

,可得,即,解得

,可得,即,解得

猜测数列的通项公式为:.

证明如下:

①当时,,命题成立;

②假设时,结论成立,即

则当时,

所以,解得

即当时也成立,

由①②可得都成,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下图是2020215日至32日武汉市新增新冠肺炎确诊病例的折线统计图.则下列说法不正确的是(

A.2020219日武汉市新增新冠肺炎确诊病例大幅下降至三位数

B.武汉市在新冠肺炎疫情防控中取得了阶段性的成果,但防控要求不能降低

C.2020219日至32日武汉市新增新冠肺炎确诊病例低于400人的有8

D.2020215日到32日武汉市新增新冠肺炎确诊病例最多的一天比最少的一天多1549

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位6个员工借助互联网开展工作,每个员工上网的概率都是0.5(相互独立).至少3人同时上网的概率为________;至少________人同时上网的概率小于0.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双曲线C的渐近线方程为,一个焦点为F0,﹣8),则该双曲线的标准方程为_____.已知点A(﹣60),若点PC上一动点,且P点在x轴上方,当点P的位置变化时,△PAF的周长的最小值为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=lnxtx+t.

1)讨论fx)的单调性;

2)当t=2时,方程fx)=max恰有两个不相等的实数根x1,x2,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:的焦点为F,直线y=4y轴的交点为P,与C的交点为Q,且.

(1)求抛物线C的方程;

(2)F的直线lC相交于A,B两点,若AB的垂直平分线C相交于M,N两点,且A,M,B,N四点在同一个圆上,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在某海岸P的附近有三个岛屿QRS,计划建立三座独立大桥,将这四个地方连起来,每座桥只连接两个地方,且不出现立体交叉形式,则不同的连接方式有( .

A.24B.20C.16D.12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】30瓶饮料中,有3瓶已过了保质期.从这30瓶饮料中任取2瓶,则至少取到一瓶已过保质期的概率为 _________ .(结果用最简分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的极值;

2)若方程有三个解,求实数的取值范围.

查看答案和解析>>

同步练习册答案