精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中, 两两垂直, ,且 .

(1)求二面角的余弦值;

(2)已知点为线段上异于的点,且,求的值.

【答案】(1)(2)

【解析】试题分析:(1)先根据条件建立空间直角坐标系,设立各点坐标,根据方程组解得各面法向量,利用向量数量积求向量夹角,最后根据二面角与向量夹角关系求结果(2)设,根据向量坐标表示距离,再根据距离相等解得,即为的值.

试题解析:以为正交基底,建立如图所示空间直角坐标系.

(1)由题意可知, .

设平面的法向量为

.

所以.

平面的法向量为

所以

所以二面角的余弦值.

(2)由题意可知,

因为,所以

化简得,所以.

又因为点异于点,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某同学参加语、数、外三门课程的考试,设该同学语、数、外取得优秀成绩的概率分别为 ),设该同学三门课程都取得优秀成绩的概率为,都未取得优秀成绩的概率为,且不同课程是否取得优秀成绩相互独立.

(1)求

(2)设为该同学取得优秀成绩的课程门数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年是内蒙古自治区成立70周年.某市旅游文化局为了庆祝内蒙古自治区成立70周年,举办了第十三届成吉思汗旅游文化周.为了了解该市关注“旅游文化周”居民的年龄段分布,随机抽取了名年龄在且关注“旅游文化周”的居民进行调查,所得结果统计为如图所示的频率分布直方图.

年龄

单人促销价格(单位:元)

(Ⅰ)根据频率分布直方图,估计该市被抽取市民的年龄的平均数;

(Ⅱ)某旅行社针对“旅游文化周”开展不同年龄段的旅游促销活动,各年龄段的促销价位如表所示.已知该旅行社的运营成本为每人元,以频率分布直方图中各年龄段的频率分布作为参团旅客的年龄频率分布,试通过计算确定该旅行社的这一活动是否盈利;

(Ⅲ)若按照分层抽样的方法从年龄在 的居民中抽取人进行旅游知识推广,并在知识推广后再抽取人进行反馈,求进行反馈的居民中至少有人的年龄在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程是 (为参数),以原点为极点, 轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.

(Ⅰ)求曲线的普通方程与直线的直角坐标方程;

(Ⅱ)已知直线与曲线交于 两点,与轴交于点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx)是定义在R上的函数,f′(x)是fx)的导函数,且满足f′(x)+fx)<0,设gx)=exfx),若不等式g(1+t2)<gmt)对于任意的实数t恒成立,则实数m的取值范围是( )

A. (﹣∞,0)∪(4,+∞) B. (0,1)

C. (﹣∞,﹣2)∪(2,+∞) D. (﹣2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆的两个焦点,且点在椭圆C上.

1)求椭圆C的方程;

2)直线(m>0)与椭圆C有且仅有一个公共点,且与x轴和y轴分别交于点M,N,当△OMN面积取最小值时,求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,点在倾斜角为的直线上,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的方程为.

(1)写出的参数方程及的直角坐标方程;

(2)设相交于两点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为,若满足条件:存在区间,使上的值域为,则称不动函数”.

1)求证:函数不动函数

2)若函数不动函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当a=2时,求函数g(x)的零点;

2)若函数g(x)有四个零点,求a的取值范围;

3)在(2)的条件下,记g(x)的四个零点分别为,求的取值范围.

查看答案和解析>>

同步练习册答案