精英家教网 > 高中数学 > 题目详情

设f(x)是以1为一个周期的函数,且当xÎ (-1,0)时,f(x)=2x+1,则的值为

[  ]

A.2
B.0
C.-1
D.-3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•潍坊一模)设函数f(x)=
1
3
mx3+(4+m)x2,g(x)=alnx
,其中a≠0.
( I )若函数y=g(x)图象恒过定点P,且点P在y=f(x)的图象上,求m的值;
(Ⅱ)当a=8时,设F(x)=f′(x)+g(x),讨论F(x)的单调性;
(Ⅲ)在(I)的条件下,设G(x)=
f(x),x≤1
g(x),x>1
,曲线y=G(x)上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且该三角形斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•上海模拟)设f(x)是R上的奇函数,对任意实数x都有f(x+2)=-f(x),当-1≤x≤1时,f(x)=x3
(1)求证:x=1是函数f(x)的一条对称轴
(2)证明函数f(x)是以4为周期的函数,并求x∈[1,5]时,f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是(-∞,+∞)上的奇函数,对任意实数x,都有f(x+2)=-f(x),当-1≤x≤1时,f(x)=x3.

(1)试证:x=1是函数f(x)的一条对称轴;

(2)证明函数f(x)是以4为周期的函数,并求x∈[1,5]时,f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源:2007-2008学年广东省深圳外国语学校高三第二次质量检测数学试卷(理科)(解析版) 题型:解答题

设f(x)是R上的奇函数,对任意实数x都有f(x+2)=-f(x),当-1≤x≤1时,f(x)=x3
(1)求证:x=1是函数f(x)的一条对称轴
(2)证明函数f(x)是以4为周期的函数,并求x∈[1,5]时,f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源:2005-2006学年上海市十校高三联考数学试卷(解析版) 题型:解答题

设f(x)是R上的奇函数,对任意实数x都有f(x+2)=-f(x),当-1≤x≤1时,f(x)=x3
(1)求证:x=1是函数f(x)的一条对称轴
(2)证明函数f(x)是以4为周期的函数,并求x∈[1,5]时,f(x)的解析式.

查看答案和解析>>

同步练习册答案