精英家教网 > 高中数学 > 题目详情

【题目】设数列的前项和为,且,数列为等差数列,且.

1)求数列的通项公式;

2)设,求数列的前项和

3)若对任意正整数,不等式均成立,求的最大值.

【答案】1.;(2;(3)最大值为4.

【解析】

根据即可求出数列的通项公式,再结合,即可求出等差数列的通项公式;

,,利用错位相减法求其前n项和即可;

知,,利用分离参数法可得, 等价于,,利用数列单调性的定义求数列的最小值即可.

1)当时,

时,,此式当时也成立.

.

.

,公差

由等差数列通项公式得,;

2)由(1)知,

所以

所以数列的前n项和为

两式相减可得,

3)因为

所以等价于

时,.

,数列从第2项起是递增数列,

所以即实数的最大值为4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线 .

(Ⅰ)求曲线的普通方程和的直角坐标方程;

(Ⅱ)若相交于两点,设点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准:(单位:吨),用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解全布市民用用水量分布情况,通过袖样,获得了100位居民某年的月用水量(单位:吨),将数据按照 …… 分成9组,制成了如图所示的频率分布直方图

1)求频率分布直方图中的值;

2)若该市政府看望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)设,若对任意的恒成立,求整数的最小值;

(3)求证:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中, 分别为的中点, .

(1)求证:平面平面

(2)若直线和平面所成角的正弦值等于,求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在平行四边形中,边的中点,将沿折起,使点到达点的位置,且

(1)求证; 平面平面

(2)若平面和平面的交线为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,左顶点为,过原点且斜率不为0的直线与椭圆交于两点,其中点在第二象限,过点轴的垂线交于点

⑴求椭圆的标准方程;

⑵当直线的斜率为时,求的面积;

⑶试比较大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m为常数).

1)讨论函数的单调性;

2)若对任意的,都存在,使得(其中e为自然对数的底数),求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记抛物线的焦点为,点在抛物线上,,斜率为的直线与抛物线交于两点.

1)求的最小值;

2)若,直线的斜率都存在,且;探究:直线是否过定点,若是,求出定点坐标;若不是,请说明理由.

查看答案和解析>>

同步练习册答案