精英家教网 > 高中数学 > 题目详情
已知奇函数f(x)在(-∞,0)∪(0,+∞)上有意义,且在(0,+∞)上是减函数,f(1)=0,又有函数g(θ)=sin2θ+mcosθ-2m,θ∈[0,
π2
],若集合M={m|g(θ)<0},集合N={m|f[g(θ)]>0}.
(1)解不等式f(x)>0;
(2)求M∩N.
分析:(1)由函数的奇偶性及单调性可判断在(-∞,0)上的单调性,再根据f(-1)=f(1)=0可解得不等式;
(2)由(1)知N={m|g(θ)<-1或0<g(θ)<1},知M∩N={m|g(θ)<-1},由g(θ)<-1,分离出m后转化为函数最值即可;
解答:解:(1)∵f(x)为奇函数且f(1)=0,∴f(-1)=-f(1)=0,
又f(x)在(0,+∞)上是减函数,
∴f(x)在(-∞,0)上也是减函数,
故f(x)>0的解集为{x|x<-1或0<x<1},
(2)由(1)知N={m|g(θ)<-1或0<g(θ)<1},
∴M∩N={m|g(θ)<-1},
由g(θ)<-1,得(2-cosθ)m>2-cos2θ,即m>
2-cos2θ
2-cosθ
=4-[(2-cosθ)+
2
2-cosθ
]

θ∈[0,
π
2
]
,∴2-cosθ∈[1,2],
(2-cosθ)+
2
2-cosθ
≥2
2
,等号成立时cosθ=2-
2

故4-[(2-cosθ)+
2
2-cosθ
]的最大值是4-2
2

从而m>4-2
2
,即M∩N={m|m>4-2
2
}
点评:本题考查函数奇偶性单调性的综合应用、不等式的求解,解抽象不等式往往运用函数的单调性解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知奇函数f(x)在x≥0时的图象是如图所示的抛物线的一部分,
(1)求函数f(x)的表达式,
(2)写出函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)在[-1,0]上单调递减,又α,β为锐角三角形的两内角,则有(  )
A、f(sinα-sinβ)≥f(cosα-cosβ)B、f(sinα-cosβ)>f(cosα-sinβ)C、f(sinα-cosβ)≥f(cosα-sinβ)D、f(sinα-cosβ)<f(cosα-sinβ)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)在R上单调递增,且f(2x-1)+f(
1
2
)<0,则x的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下面四个命题:
①已知函数f(x)=
x
 ,x≥0 
-x
 ,x<0 
且f(a)+f(4)=4,那么a=-4;
②一组数据18,21,19,a,22的平均数是20,那么这组数据的方差是2;
③已知奇函数f(x)在(0,+∞)为增函数,且f(-1)=0,则不等式f(x)<0的解集{x|x<-1};
④在极坐标系中,圆ρ=-4cosθ的圆心的直角坐标是(-2,0).
其中正确的是
②,④
②,④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)在R上单调递减,且f(3-a)+f(1-a)<0,则a的取值范围是
(-∞,2)
(-∞,2)

查看答案和解析>>

同步练习册答案