精英家教网 > 高中数学 > 题目详情

【题目】如图,菱形的边长为交于点.将菱形沿对角线折起,得到三棱锥,点是棱的中点,

(I)求证:平面⊥平面

(II)求二面角的余弦值.

【答案】(1)详见解析;(2)

【解析】试题分析:(Ⅰ)利用菱形的性质与勾股定理推出平面,从而利用面面垂直的判定求证即可;(Ⅱ)以为原点建立空间直角坐标系,然后求得相关点的坐标与向量,从而求得平面的法向量,进而利用空间夹角公式求解即可.

(Ⅰ)证明:是菱形,

,

中,,

中点,

平面

平面⊥平面

(Ⅱ)由题意, , 又由(Ⅰ)知 建立如图所示空间直角坐标系,由条件易知

设平面的法向量,则

,则

所以,

由条件易证平面,故取其法向量为

所以,

由图知二面角为锐二面角,故其余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求不等式的解集;

(2)若不等式的解集为空集,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为t为参数),以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρρ2sinθ)=1

1)求C的直角坐标方程;

2)设直线ly轴相交于P,与曲线C相交于AB两点,且|PA|+|PB|2,求点O到直线l的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为t为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρsin2θ4cosθ

1)求直线l的普通方程与曲线C的直角坐标方程;

2)若直线lx轴的交点为F,直线l与曲线C的交点为AB,求|FA|+|FB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)当时,求函数的图象在点处的切线方程;

2)当时,若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程:在直角坐标系中,曲线为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的极坐标方程;

2)已知点,直线的极坐标方程为,它与曲线的交点为,与曲线的交点为,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,将边长为1的正方形ABCD沿x轴正向滚动,先以A为中心顺时针旋转,当B落在x轴时,又以B为中心顺时针旋转,如此下去,设顶点C滚动时的曲线方程为,则下列说法不正确的是

A.恒成立B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fxgx)=f+1kRk≠0),则下列关于函数yf[gx]+1的零点个数判断正确的是(

A.k0时,有2个零点;当k0时,有4个零点

B.k0时,有4个零点;当k0时,有2个零点

C.无论k为何值,均有2个零点

D.无论k为何值,均有4个零点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2011年国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源于中国古代数学家祖冲之的圆周率。公元263年,中国数学家刘徽用“割圆术”计算圆周率,计算到圆内接3072边形的面积,得到的圆周率是.公元480年左右,南北朝时期的数学家祖冲之进一步得出精确到小数点后7位的结果,给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率和约率。大约在公元530年,印度数学大师阿耶波多算出圆周率约为).在这4个圆周率的近似值中,最接近真实值的是( )

A.B.C.D.

查看答案和解析>>

同步练习册答案