【题目】已知函数.
(1)判断函数的单调性;
(2)若,当时,不等式恒成立,求实数的取值范围.
【答案】(1)见解析;(2)
【解析】
试题分析:(1)对函数求导来利用,得出函数的单调区间,这里注意对的讨论;(2)要让恒成立,应猜想函数在上单调递增或递减,而或恒成立;所以下面要做的是看,或恒成立,然后再看在上单调性.
试题解析:(1),则.
当时,对,有,所以函数在区间上单调递增;
当时,由,得,由,得,
此时函数的单调递增区间为,单调递减区间为,
综上,当时,函数的单调递增区间为,无单调递减区间;
当时,函数的单调递增区间为,
单调递减区间为.
(2)易知当时,,故当.
先分析证明:.
要证,只需证,即证,
构造函数,则,
故函数在上单调递增,所以,则成立.
当时,由(1)知,在上单调递增,则在上恒成立;
当是地,由(1)知,函数在上单调递增,在上单调递减.
故当时,,所以,则不满足题意.
所以满足题意的实数的取值范围是
科目:高中数学 来源: 题型:
【题目】已知某运动员每次投篮命中的概率等于 .现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0,表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{}的前n项和为,且满足2=+m(m∈R).
(Ⅰ)求数列{}的通项公式;
(Ⅱ)若数列{}满足,求数列{}的前n项和.
【答案】(Ⅰ)(Ⅱ)
【解析】
(Ⅰ)法一:由前n项和与数列通项公式的关系可得数列的通项公式为;
法二:由题意可得,则,据此可得数列的通项公式为.
(Ⅱ)由(Ⅰ)可得,裂项求和可得.
(Ⅰ)法一:
由得,
当时,,即,
又,当时符合上式,所以通项公式为.
法二:
由得
从而有,
所以等比数列公比,首项,因此通项公式为.
(Ⅱ)由(Ⅰ)可得,
,
.
【点睛】
本题主要考查数列前n项和与通项公式的关系,裂项求和的方法等知识,意在考查学生的转化能力和计算求解能力.
【题型】解答题
【结束】
18
【题目】四棱锥S-ABCD的底面ABCD为直角梯形,AB∥CD,AB⊥BC,AB=2BC=2CD=2,△SAD为正三角形.
(Ⅰ)点M为棱AB上一点,若BC∥平面SDM,AM=λAB,求实数λ的值;
(Ⅱ)若BC⊥SD,求二面角A-SB-C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.
(I)求张同学至少取到1道乙类题的概率;
(II)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用表示张同学答对题的个数,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一同学在电脑中打出若干个圈:○●○○●○○○●○○○○●○○○○○●…若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前2012个圈中的●的个数是 ( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆E: +y2=1(a>1)的右焦点为F,右顶点为A,已知 ,其中O为原点,e为椭圆的离心率.
(Ⅰ)求a的值;
(Ⅱ)动直线l过点N(﹣2,0),l与椭圆E交于P,Q两点,求△OPQ面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C1的参数方程为(其中α为参数),曲线C2:(x﹣1)2+y2=1,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C1的普通方程和曲线C2的极坐标方程;
(2)若射线θ=(ρ>0)与曲线C1,C2分别交于A,B两点,求|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,G为AD中点,F是CE的中点.
(1)证明:BF∥平面ACD;
(2)求平面BCE与平面ACD所成锐二面角的大小;
(3)求点G到平面BCE的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com