若函数f(x)=ax3-bx+4,当x=2时,函数f(x)有极值-.
(1)求函数的解析式.
(2)若方程f(x)=k有3个不同的根,求实数k的取值范围.
(1) f(x)=x3-4x+4.(2)-<k<.
解析试题分析:f′(x)=3ax2-b.
(1)由题意得解得
故所求函数的解析式为f(x)=x3-4x+4.
(2)由(1)可得f′(x)=x2-4=(x-2)(x+2),
令f′(x)=0,得x=2或x=-2.
当x变化时,f′(x),f(x)的变化情况如下表:
因此,当x=-2时,f(x)有极大值,x (-∞,-2) -2 (-2,2) 2 (2,+∞) f′(x) + 0 - 0 + f(x) ? ? -
当x=2时,f(x)有极小值-,
所以函数f(x)=x3-4x+4的图象大致如图所示.
若f(x)=k有3个不同的根,则直线y=k与函数f(x)的图象有3个交点,所以-<k<.
考点:本题主要考查函数的解析式,应用导数研究函数的单调性、极值。
点评:中档题,利用导数研究函数的单调性、极值、最值,是导数的应用中的基本问题。本题(II)应用导数,通过研究函数的单调性、极值等,对函数的图象有了充分的了解,明确了函数零点情况。
科目:高中数学 来源: 题型:解答题
已知曲线 y = x3 + x-2 在点 P0 处的切线 与直线4x-y-1=0平行,且点 P0 在第三象限,
(1)求P0的坐标;
(2)若直线 , 且 l 也过切点P0 ,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
理科(本小题14分)已知函数,当时,函数取得极大值.
(Ⅰ)求实数的值;(Ⅱ)已知结论:若函数在区间内导数都存在,且,则存在,使得.试用这个结论证明:若,函数,则对任意,都有;(Ⅲ)已知正数满足求证:当,时,对任意大于,且互不相等的实数,都有
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com