精英家教网 > 高中数学 > 题目详情

函数的f(x)=数学公式定义域是________.

,2)
分析:要使函数有意义,则,解此不等式组即可.
解答:要使函数有意义,
,解得
故函数的定义域为:(,2)
故答案为:(,2)
点评:本题考查函数的定义域,使式子有意义是求定义域的关键,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1
(1)求证:f(0)=1且当x<0时,f(x)>1
(2)求证:f(x)在R上是减函数;
(3)设集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•门头沟区一模)定义在(-∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{an},{f(an)}仍是等比数列,则称f(x)为“等比函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数:
①f(x)=2x
②f(x)=log2|x|;
③f(x)=x2
④f(x)=ln2x
则其中是“等比函数”的f(x)的序号为
③④
③④

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在(-∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{an},{f(an)}仍是等比数列,则称f(x)为“保等比数列函数”,现有定义在(-∞,0)∪(0,+∞)上的如下函数:1、f(x)=x2;2、f(x)=2x;3、f(x)=
|x|
;4、f(x)=ln|x|.其中是“保等比函数”的f(x)的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•河池模拟)定义在R上的函数f(x),如果存在函数g(x)=kx+b(k,b为常数),使得f(x)≥g(x)对一切实数x都成立,则称g(x)为函数f(x)的一个承托函数.
现有如下函数:
①f(x)=x3
②f(x)=2-x
f(x)=
lgx,x>0
0,x≤0

④f(x)=x+sinx.
则存在承托函数的f(x)的序号为
②④
②④
.(填入满足题意的所有序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1.
(1)求证:f(0)=1且当x<0时,f(x)>1;
(2)设集合A={(x,y)|f(-x2+6x-1)•f(y)=1},B={(x,y)|y=a},且A∩B=∅,求实数a的取值范围;
(3)求证:f(x)在R上是减函数.

查看答案和解析>>

同步练习册答案