精英家教网 > 高中数学 > 题目详情
已知共面向量
a
b
c
满足|
a|
=|
b
|=1
,<
a
b
>=120°
且<
a
-
c
b
-
c
>=60°
,则|
c
|
的最大值为(  )
A、
3
B、1
C、
3
2
D、2
考点:平面向量数量积的运算
专题:计算题,解三角形,平面向量及应用
分析:
OA
=
a
OB
=
b
OC
=
c
,利用向量的运算法则作出图;结合图,判断出四点共圆;利用正弦定理求出外接圆的直径,即为最大值.
解答: 解:由|
a|
=|
b
|=1
,<
a
b
>=120°

且<
a
-
c
b
-
c
>=60°

如图所示:设
OA
=
a
OB
=
b
OC
=
c
,则
CA
=
a
-
c
CB
=
b
-
c

AB
=
b
-
a
AB
2
=
b
2
+
a
2
-2
a
b
=1+1-2×1×1×(-
1
2
)
=3,
∴|
AB
|=
3

由三角形的正弦定理得外接圆的直径2R=
AB
sin∠ACB
=
3
sin60°
=2,
当OC为直径时,它的模最大,且最大值为2,
故选:D.
点评:本题考查向量的数量积公式、向量的运算法则、四点共圆的判断、三角形的正弦定理,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面三角形中,若ABC的三边长为a,b,c,其内切圆半径为r,有结论:ABC的面积S=
1
2
(a+b+c)r,类比该结论,则在空间四面体ABCD中,若四个面的面积分别为S1,S2,S3,S4,其内切球半径为R,则有相应结论:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足
a
b
,|
a
|=1,|
b
|=2,则|2
a
-
b
|=(  )
A、2
2
B、2
3
C、8
D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知直线l的参数方程为
x=1-
3
2
t
y=
1
2
t
(t为参数),取与直角坐标系xOy相同的长度单位,且以原点为极点,x轴的正半轴为极轴,建立极坐标系,圆C的圆心是(
2
π
4
),半径r=
2

(1)求直线l的普通方程和圆C的极坐标方程;
(2)若直线l与圆C相交于A、B两点,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦点,P是双曲线上的点,若它的渐近线上存在一点Q(在第一象限内),使得
FP
=2
PQ
,则双曲线离心率的取值范围是(  )
A、(1,3)
B、(3,+∞)
C、(1,2)
D、(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
x3
3
-
a
2
x2+x+1在区间(
1
3
,4)上有极值点,则实数a的取值范围是(  )
A、(2,
10
3
B、[2,
10
3
C、(
10
3
17
4
D、(2,
17
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠A=60°,AB=3,AC=5,BD=1,CE=2.
(1)求BC长;
(2)求
CD
BE
的值;
(3)AF与BC是否垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

点A(1,3)关于直线y=kx+b的对称点是B(-2,1),则直线y=kx+b在x轴上的截距是(  )
A、
5
6
B、-
6
5
C、
5
4
D、-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

求适合下列条件的直线方程:
(1)经过点P(3,2)且在两坐标轴上的截距相等;
(2)经过点A(-1,-3),倾斜角等于直线y=3x的倾斜角的2倍.

查看答案和解析>>

同步练习册答案