精英家教网 > 高中数学 > 题目详情
16.设$\overrightarrow{a}$=(3,-2,-1)是直线l的方向向量,$\overrightarrow{n}$=(1,2,-1)是平面α的法向量,则(  )
A.l⊥αB.l∥αC.l?α或l⊥αD.l∥α或l?α

分析 利用空间线面位置关系、法向量的性质即可判断出结论.

解答 解:∵$\overrightarrow{n}$•$\overrightarrow{a}$=3-4+1=0,
∴$\overrightarrow{n}⊥\overrightarrow{a}$.
∴l∥α或l?α,
故选:D.

点评 本题考查了空间线面位置关系、法向量的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知等比数列{an}的公比为正数,且a1•a7=2a32,a2=2,则a1的值是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若x>0,y>0,$\frac{4}{x}$+$\frac{1}{y}$=$\frac{1}{4}$,则x+4y的最小值为64.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知空间向量$\overrightarrow{a}$=(0,$\frac{5}{4}$,-$\frac{5}{4}$),$\overrightarrow{b}$=(x,0,-2),则“x=2”是“<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{π}{3}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设命题p:?x0∈(-2,+∞),6+|x0|=5.命题q:?x∈(-∞,0),x2+$\frac{4}{{x}^{2}}$≥4.命题r:若|x|+|y|≤1,则$\frac{|y|}{|x|+2}$≤$\frac{1}{2}$.
(1)写出命题r的否命题;
(2)判断命题¬p,p∨r,p∧q的真假,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,点M在双曲线C1的一条渐近线上,且OM⊥MF2,若△OMF2的面积为16,且双曲线C1与双曲线C2:$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1的离心率相同,则双曲线C1的实轴长为(  )
A.32B.16C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线C:y2=4x,过焦点F的直线l与抛物线C交于A,B两点,定点M(5,0).
(Ⅰ)若直线l的斜率为1,求△ABM的面积;
(Ⅱ)若△AMB是以M为直角顶点的直角三角形,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知椭圆的短轴长是焦距的2倍,则椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知a>0,函数$f(x)=\left\{{\begin{array}{l}{-\frac{1}{3}{x^3}+\frac{1-a}{2}{x^2}+ax-\frac{4}{3},x≤1}\\{(a-1)lnx+\frac{1}{2}{x^2}-ax,x>1}\end{array}}\right.$若f(x)在区间(-a,2a)上单调递增,则实数a的取值范围是(0,$\frac{10}{9}$].

查看答案和解析>>

同步练习册答案