【题目】在平面直角坐标系xOy中已知椭圆,焦点在x轴上的椭圆与的离心率相同,且椭圆的外切矩形ABCD(两组对边分别平行于x轴、y轴)的顶点在椭圆上.
(1)求椭圆的标准方程.
(2)设为椭圆上一点(不与点A、B、C、D重合).
①若直线:,求证:直线l与椭圆相交;
②记①中的直线l与椭圆C1的交点为S、T,求证的面积为定值.
科目:高中数学 来源: 题型:
【题目】已知函数, .
(1)当时,求曲线在点处的切线方程;
(2)当时,求在区间上的最大值和最小值;
(3)当时,若方程在区间上有唯一解,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px(0<p<8)的焦点为F点Q是抛物线C上的一点,且点Q的纵坐标为4,点Q到焦点的距离为5.
(1)求抛物线C的方程;
(2)设直线l不经过Q点且与抛物线交于A,B两点,QA,QB的斜率分别为K1,K2,若K1K2=﹣2,求证:直线AB过定点,并求出此定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在传染病学中,通常把从致病刺激物侵人机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期. 一研究团队统计了某地区1000名患者的相关信息,得到如下表格:
潜伏期(单位:天) | |||||||
人数 |
(1)求这1000名患者的潜伏期的样本平均数x (同一组中的数据用该组区间的中点值作代表) ;
(2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述1000名患者中抽取200人,得到如下列联表.请将列联表补充完整,并根据列联表判断是否有95%的把握认为潜伏期与患者年龄有关;
潜伏期天 | 潜伏期天 | 总计 | |
岁以上(含岁) | |||
岁以下 | |||
总计 |
(3)以这1000名患者的潜伏期超过6天的频率,代替该地区1名患者潜伏期超过6天发生的概率,每名患者的潜伏期是否超过6天相互独立,为了深入研究,该研究团队随机调查了20名患者,其中潜伏期超过6天的人数最有可能(即概率最大)是多少?
附:
,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知抛物线的准线方程为.
(1)求p的值;
(2)过抛物线C的焦点的直线l交抛物线C于点A,B,交抛物线C的准线于点P,若A为线段PB的中点,求线段AB的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com