如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1=.
(1)证明:A1C⊥平面BB1D1D;
(2)求平面OCB1与平面BB1D1D的夹角θ的大小.
科目:高中数学 来源: 题型:解答题
如图,在四棱锥PABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=2,BD=2,E是PB上任意一点.
(1)求证:AC⊥DE;
(2)已知二面角APBD的余弦值为,若E为PB的中点,求EC与平面PAB所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,且满足=== (如图(1)),将△AEF沿EF折起到△EF的位置,使二面角EFB成直二面角,连接B、P(如图(2)).
(1)求证: E⊥平面BEP;
(2)求直线E与平面BP所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.
(1)求证:B1E⊥AD1.
(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.
(3)若二面角A-B1E-A1的大小为30°,求AB的长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,是边长为的正方形,平面,,,与平面所成角为.
(1)求证:平面;
(2)求二面角的余弦值;
(3)设点是线段上一个动点,试确定点的位置,使得平面,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,圆锥的高PO=4,底面半径OB=2,D为PO的中点,E为母线PB的中点,F为底面圆周上一点,满足EF⊥DE.
(1)求异面直线EF与BD所成角的余弦值;
(2)求二面角OOFE的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com