精英家教网 > 高中数学 > 题目详情

【题目】1)在中,角ABC所对的边分别是abc,证明余弦定理:

2)长江某地南北岸平行,如图所示,江面宽度,一艘游船从南岸码头A出发航行到北岸,假设游船在静水中的航行速度,水流速度,设的夹角为θ),北岸的点在点A的正北方向.

①当多大时,游船能到达处,需要航行多少时间?

②当时,判断游船航行到达北岸的位置在的左侧还是右侧,并说明理由.

【答案】1)证明见解析;(2)①时,需要航行;②左侧,理由见解析

【解析】

1)利用,两边平方即可证明;

2)①游船能到处,则游船在水平方向上的速度和水流速度大小相等,得到,从而解出,再解出游船垂直江岸方向的速度,即可求得所需时间;②判断游船水平方向上速度向左,即可判断游船到达的左侧.

1)利用向量法证明余弦定理:

中,

两边平方可得:

余弦定理得证;

2)①若游船能到处,则游船在水平方向上的速度和水流速度大小相等,

则有,得

所以

因为,所以

此时游船垂直江岸方向的速度

时间

即当时,游船能到达处,需要航行

时,游船水平方向的速度大小为

方向水平向左,故最终到达北岸时游船在点的左侧.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】100件产品中,有98件合格品,2件不合格品,从这100件产品中任意抽出3件,则( )

A.抽出的3件中恰好有1件是不合格品的抽法有

B.抽出的3件中恰好有1件是不合格品的抽法有

C.抽出的3件中至少有1件是不合格品的抽法有

D.抽出的3件中至少有1件是不合格品的抽法有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋中有2个红球,4个白球.

1)从中取出3个球,求取到红球个数的概率分布及数学期望;

2)每次取1个球,取出后记录颜色并放回袋中.

①若取到第二次红球就停止试验,求第5次取球后试验停止的概率;

②取球4次,求取到红球个数的概率分布及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:

①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;

②设有一个回归方程,变量增加一个单位时,平均增加个单位;

③线性回归方程必过);

④在一个列联表中,由计算得,则有以上的把握认为这两个变量间有关系.

其中错误的个数是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若方程仅有一个解,则实数的取值范围为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左、右焦点分别为右支上的一点,轴交于点的内切圆在边上的切点为.若,则的离心率是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是为参数).

(Ⅰ)将曲线的极坐标方程化为直角坐标方程;

(Ⅱ)若直线与曲线相交于两点,且,求直线的倾斜角的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域是使得解析式有意义的x集合,如果对于定义域内的任意实数x,函数值均为正,则称此函数为“正函数”.

1)证明函数是“正函数”;

2)如果函数不是“正函数”,求正数a的取值范围.

3)如果函数是“正函数”,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校共有学生2000人,其中男生1100人,女生900人为了调查该校学生每周平均课外阅读时间,采用分层抽样的方法收集该校100名学生每周平均课外阅读时间(单位:小时)

1)应抽查男生与女生各多少人?

2)如图,根据收集100人的样本数据,得到学生每周平均课外阅读时间的频率分布直方图,其中样本数据分组区间为.若在样本数据中有38名女学生平均每周课外阅读时间超过2小时,请完成每周平均课外阅读时间与性别的列联表,并判断是否有95%的把握认为“该校学生的每周平均课外阅读时间与性别有关”.

男生

女生

总计

每周平均课外阅读时间不超过2小时

每周平均课外阅读时间超过2小时

总计

附:

0.100

0.050

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

同步练习册答案