【题目】(1)在中,角A,B,C所对的边分别是a,b,c,证明余弦定理:;
(2)长江某地南北岸平行,如图所示,江面宽度,一艘游船从南岸码头A出发航行到北岸,假设游船在静水中的航行速度,水流速度,设和的夹角为θ(),北岸的点在点A的正北方向.
①当多大时,游船能到达处,需要航行多少时间?
②当时,判断游船航行到达北岸的位置在的左侧还是右侧,并说明理由.
【答案】(1)证明见解析;(2)①时,需要航行;②左侧,理由见解析
【解析】
(1)利用,两边平方即可证明;
(2)①游船能到处,则游船在水平方向上的速度和水流速度大小相等,得到,从而解出,再解出游船垂直江岸方向的速度,即可求得所需时间;②判断游船水平方向上速度向左,即可判断游船到达的左侧.
(1)利用向量法证明余弦定理:
在中,,
两边平方可得:,
即,
余弦定理得证;
(2)①若游船能到处,则游船在水平方向上的速度和水流速度大小相等,
则有,得,
所以,
因为,所以,
此时游船垂直江岸方向的速度,
时间,
即当时,游船能到达处,需要航行;
②时,游船水平方向的速度大小为,
方向水平向左,故最终到达北岸时游船在点的左侧.
科目:高中数学 来源: 题型:
【题目】在100件产品中,有98件合格品,2件不合格品,从这100件产品中任意抽出3件,则( )
A.抽出的3件中恰好有1件是不合格品的抽法有种
B.抽出的3件中恰好有1件是不合格品的抽法有种
C.抽出的3件中至少有1件是不合格品的抽法有种
D.抽出的3件中至少有1件是不合格品的抽法有种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个袋中有2个红球,4个白球.
(1)从中取出3个球,求取到红球个数的概率分布及数学期望;
(2)每次取1个球,取出后记录颜色并放回袋中.
①若取到第二次红球就停止试验,求第5次取球后试验停止的概率;
②取球4次,求取到红球个数的概率分布及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法:
①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
②设有一个回归方程,变量增加一个单位时,平均增加个单位;
③线性回归方程必过);
④在一个列联表中,由计算得,则有以上的把握认为这两个变量间有关系.
其中错误的个数是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(为参数).
(Ⅰ)将曲线的极坐标方程化为直角坐标方程;
(Ⅱ)若直线与曲线相交于,两点,且,求直线的倾斜角的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域是使得解析式有意义的x集合,如果对于定义域内的任意实数x,函数值均为正,则称此函数为“正函数”.
(1)证明函数是“正函数”;
(2)如果函数不是“正函数”,求正数a的取值范围.
(3)如果函数是“正函数”,求正数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校共有学生2000人,其中男生1100人,女生900人为了调查该校学生每周平均课外阅读时间,采用分层抽样的方法收集该校100名学生每周平均课外阅读时间(单位:小时)
(1)应抽查男生与女生各多少人?
(2)如图,根据收集100人的样本数据,得到学生每周平均课外阅读时间的频率分布直方图,其中样本数据分组区间为.若在样本数据中有38名女学生平均每周课外阅读时间超过2小时,请完成每周平均课外阅读时间与性别的列联表,并判断是否有95%的把握认为“该校学生的每周平均课外阅读时间与性别有关”.
男生 | 女生 | 总计 | |
每周平均课外阅读时间不超过2小时 | |||
每周平均课外阅读时间超过2小时 | |||
总计 |
附:
0.100 | 0.050 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com