【题目】若函数在上单调递增,则的取值范围是( )
A. B. C. D.
【答案】A
【解析】函数f(x)=x﹣sin2x+asinx的导数为f′(x)=1﹣cos2x+acosx,
由题意可得f′(x)≥0恒成立,
即为1﹣cos2x+acosx≥0,
即有﹣cos2x+acosx≥0,
设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,
当t=0时,不等式显然成立;
当0<t≤1时,3a≥4t﹣,
由4t﹣在(0,1]递增,可得t=1时,取得最大值﹣1,
可得3a≥﹣1,即a≥﹣;
当﹣1≤t<0时,3a≤4t﹣,
由4t﹣在[﹣1,0)递增,可得t=﹣1时,取得最小值1,
可得3a≤1,即a≤.
综上可得a的范围是[﹣, ].
另解:设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,
由题意可得5﹣4+3a≥0,且5﹣4﹣3a≥0,
解得a的范围是[﹣, ].
故选:A.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sinxcosx+cos2x-.
(Ⅰ)求函数f(x)的最小正周期及单调递增区间;
(Ⅱ)将函数f(x)图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数g(x)的图象.若关于x的方程g(x)-k=0,在区间[0,]上有实数解,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=4sinxsin(x+ )﹣1(x∈R).
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[0, ]上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每提高1元,租不出去的自行车就增加3辆.
规定:每辆自行车的日租金不超过20元,每辆自行车的日租金x元只取整数,并要求出租所有自行车一日的总收入必须超过一日的管理费用,用y表示出租所有自行车的日净收入(即一日中出租所有自行车的总收入减去管理费后的所得).
(1)求函数y=f(x)的解析式及定义域;
(2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.
(Ⅰ)求a,b的值;
(Ⅱ)讨论f(x)的单调性.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)= 在区间(﹣∞,2)上为单调递增函数,则实数a的取值范围是( )
A.[0,+∞)
B.(0,e]
C.(﹣∞,﹣1]
D.(﹣∞,﹣e)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com