精英家教网 > 高中数学 > 题目详情

【题目】若函数上单调递增,则的取值范围是( )

A. B. C. D.

【答案】A

【解析】函数f(x)=x﹣sin2x+asinx的导数为f′(x)=1﹣cos2x+acosx,

由题意可得f′(x)0恒成立,

即为1﹣cos2x+acosx0,

即有cos2x+acosx0,

t=cosx(﹣1t1),即有5﹣4t2+3at0,

t=0时,不等式显然成立;

0t1时,3a4t﹣

4t﹣在(0,1]递增,可得t=1时,取得最大值﹣1,

可得3a﹣1,即a

当﹣1t0时,3a4t﹣

4t﹣在[﹣1,0)递增,可得t=﹣1时,取得最小值1,

可得3a1,即a

综上可得a的范围是[ ]

另解:设t=cosx(﹣1t1),即有5﹣4t2+3at0,

由题意可得5﹣4+3a0,且5﹣4﹣3a0,

解得a的范围是[ ]

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx)=sinxcosx+cos2x-

(Ⅰ)求函数fx)的最小正周期及单调递增区间;

(Ⅱ)将函数fx)图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数gx)的图象.若关于x的方程gx)-k=0,在区间[0,]上有实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4sinxsin(x+ )﹣1(x∈R).
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[0, ]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每提高1元,租不出去的自行车就增加3辆.

规定:每辆自行车的日租金不超过20元,每辆自行车的日租金x元只取整数,并要求出租所有自行车一日的总收入必须超过一日的管理费用,用y表示出租所有自行车的日净收入(即一日中出租所有自行车的总收入减去管理费后的所得).

(1)求函数y=f(x)的解析式及定义域;

(2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察如图等式,照此规律,第n个等式为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex(axb)-x2-4x,曲线yf(x)在点(0,f(0))处的切线方程为y=4x+4.

(Ⅰ)求ab的值;

(Ⅱ)讨论f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= 在区间(﹣∞,2)上为单调递增函数,则实数a的取值范围是(
A.[0,+∞)
B.(0,e]
C.(﹣∞,﹣1]
D.(﹣∞,﹣e)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)如图,在多面体中, 是正方形, 平面, 平面, ,点为棱的中点.

(1)求证:平面平面

(2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的单调区间和极值;

2)已知函数的图象与函数的图象关于直线对称,证明当时,

3)如果,且,证明: .

查看答案和解析>>

同步练习册答案