精英家教网 > 高中数学 > 题目详情

设数列的前项和为,且 ;数列为等差数列,且 .

(1)求数列的通项公式;

(2)若(=1,2, 3…),为数列的前项和.求.

 

【答案】

(1);(2).

【解析】第一问中利用数列的通项公式和前n项和的关系式可知,由,令,则,又, 所以

时,由,可得,即,进而得到数列的通项公式。

第二问中,因为,然后利用错位相减法得到结论。

解:(1)由,令,则,又, 所以  …2分

时,由,可得,即  …4分

所以是以为首项,为公比的等比数列,于是  …………6分

(2)数列为等差数列,公差,可得…………7分

从而

      ………………13分

.   ……………………14分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(09年长沙一中一模文)(13分)  设数列的前项和为,且,其中为常数且

(1)证明:数列是等比数列;

(2)设数列的公比,数列满足

   求数列的通项公式;

(3)设,数列的前项和为,求证:当时,

查看答案和解析>>

科目:高中数学 来源:广东省佛山一中2010-2011学年高一下学期期末考试数学 题型:解答题

(本题满分14分).设数列的前项和为,且
(1)求数列的通项公式;
(2)设,数列的前项和为,求证:

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省八校高三第二次联考文科数学试卷(解析版) 题型:解答题

设数列的前项和为,且满足.

(1)求数列的通项公式;

(2)在数列的每两项之间按照如下规则插入一些数后,构成新数列:两项之间插入个数,使这个数构成等差数列,其公差为,求数列的前项和为.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年北京市海淀区高三5月查漏补缺数学试卷(解析版) 题型:解答题

设数列的前项和为,且满足.

(Ⅰ)求证:数列为等比数列;

(Ⅱ)求通项公式

(Ⅲ)若数列是首项为1,公差为2的等差数列,求数列的前项和为.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年新疆乌鲁木齐一中高三第一次月考文科数学试卷 题型:解答题

(本小题满分12分)设数列的前项和为,且对于

任意的正整数都成立,其中为常数,且

(1)求证:数列是等比数列(4分)

(2)设数列的公比,数列满足:)(

 

,求证:数列是等差数列,并求数列的前项和

 

 

查看答案和解析>>

同步练习册答案