设函数.
(Ⅰ)写出函数的最小正周期及单调递减区间;
(Ⅱ)当时,函数的最大值与最小值的和为,求的解析式;
(Ⅲ)将满足(Ⅱ)的函数的图像向右平移个单位,纵坐标不变横坐标变为原来的2
倍,再向下平移,得到函数,求图像与轴的正半轴、直线所围成图形的
面积.
科目:高中数学 来源: 题型:解答题
把函数的图像上的每一点的横坐标伸长为原来的2倍,纵坐标不变,然后再向左平移个单位后得到一个最小正周期为的奇函数。
(1)求和的值
(2)求函数的最大值与最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在△ABC内有一内接正方形,它的一条边在斜边BC上,设AB=,∠ABC
(1)求△ABC的面积与正方形面积;
(2)当变化时,求的最小值,并求出对应的值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com