精英家教网 > 高中数学 > 题目详情

设函数.
(Ⅰ)写出函数的最小正周期及单调递减区间;
(Ⅱ)当时,函数的最大值与最小值的和为,求的解析式;
(Ⅲ)将满足(Ⅱ)的函数的图像向右平移个单位,纵坐标不变横坐标变为原来的2
倍,再向下平移,得到函数,求图像与轴的正半轴、直线所围成图形的
面积.

(Ⅰ)(Ⅱ)
(Ⅲ)1

解析试题分析:(Ⅰ),  
.
,得.
故函数的单调递减区间是.    
(2).
时,原函数的最大值与最小值的和
.                        
(3)由题意知                               
=1 
考点:三角函数的恒等变换及化简求值 三角函数的周期性及其求法 正弦函数的单调性
点评:本题考查的知识点是三角函数的恒等变换及化简求值,三角函数的周期性及其求法,
正弦函数的值域,正弦函数的单调性,其中根据二倍角公式,和辅助角公式,化简函数的形
式,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数(其中A>0,>0,的部分图象如图所示,求这个函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的最小正周期为,最小值为,图像过点
(1)求的解析式
(2)求满足的集合 。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

把函数的图像上的每一点的横坐标伸长为原来的2倍,纵坐标不变,然后再向左平移个单位后得到一个最小正周期为的奇函数
(1)求的值
(2)求函数的最大值与最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中)的最大值为2,最小正周期为.
(1)求函数的解析式;
(2)若函数图象上的两点的横坐标依次为为坐标原点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图像上两相邻最高点的坐标分别为.
(Ⅰ)求的值;
(Ⅱ)在△ABC中,分别是角A,B,C的对边,且的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在△ABC内有一内接正方形,它的一条边在斜边BC上,设AB=,∠ABC

(1)求△ABC的面积与正方形面积
(2)当变化时,求的最小值,并求出对应的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数
(Ⅰ)求满足时的的集合;
(Ⅱ)当时,求函数的最值.

查看答案和解析>>

同步练习册答案