精英家教网 > 高中数学 > 题目详情
已知全集为U=R,A={x|-3≤x≤4},B={x|-1<x<5}.
求:
(1)A∩B及(CUA)∪B;
(2)C={x|x>a},若A⊆C,求a的取值范围.
分析:(1)根据补集的定义求得 CUA,根据两个集合的交集、并集的定义求得A∩B及(CUA)∪B.
(2)由于 C={x|x>a},A⊆C,由此可得 a<-3,从而得到a的取值范围.
解答:解:(1)∵全集为U=R,A={x|-3≤x≤4},B={x|-1<x<5},
∴CUA={x|x<-3,或 x>4},
∴A∩B=(-1,4],
(CUA)∪B={x|x<-3,或 x>4}∪{x|-1<x<5}=(-∞,-3)∪(-1,+∞).
(2)∵C={x|x>a},A⊆C,∴a<-3,
∴a的取值范围是(-∞,-3).
点评:本题主要考查集合关系中参数的取值范围问题,集合间的包含关系,集合的补集,两个集合的交集、并集的定义和求法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知全集为U=R,A={x|f(x)=lg(x-2)+
5-x
}
,B={y|y=|x|+4},求:
(1)A∩B,A∪B;
(2)A∩CUB,CUA∪CUB.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集为U=R,A={x|-3≤x≤4},B={x|-1<x<5}.
(1)求A∪B,A∩B;                
(2)求(?UA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集为U=R,A={x|f(x)=lg(x-2)+
5-x
}
,B={y|y=|x|+4},
求:(1)A∩B;
(2)(CUA)∪CUB.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集为U=R,A={x|-2<x<2},B={x|x<-1或x≥4}.求
(1)A∩B;
(2)A∪B;
(3)(?UA)∩(?UB).

查看答案和解析>>

同步练习册答案