【题目】(理)在长方体中,
,
,
,点
在棱
上移动.
(1)探求多长时,直线
与平面
成
角;
(2)点移动为棱
中点时,求点
到平面
的距离.
科目:高中数学 来源: 题型:
【题目】已知曲线的参数方程为
(
为参数),在同一平面直角坐标系中,将曲线
上的点按坐标变换
得到曲线
,以原点为极点,
轴的正半轴为极轴,建立极坐标系.设
点的极坐标为
.
(1)求曲线的极坐标方程;
(2)若过点且倾斜角为
的直线
与曲线
交于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志是“连续10日,每天新增疑似病例不超过7人”.过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下:
甲地:总体平均数为3,中位数为4;
乙地:总体平均数为1,总体方差大于0;
丙地:总体平均数为2,总体方差为3;
丁地:中位数为2,众数为3;
则甲、乙、两、丁四地中,一定没有发生大规模群体感染的是( )
A.甲地B.乙地C.丙地D.丁地
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:的左、右焦点分别是
,点
,若
的内切圆的半径与外接圆的半径的比是
.
(1)求椭圆C的方程;
(2)点M是椭圆C的左顶点,P、Q是椭圆上异于左、右顶点的两点,设直线MP、MQ的斜率分别为、
,若
,试问直线PQ是否过定点?若过定点,求该定点坐标;若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校决定为本校上学所需时间不少于30分钟的学生提供校车接送服务.为了解学生上学所需时间,从全校600名学生中抽取50人统计上学所需时间(单位:分钟),将600人随机编号为001,002,…,600,抽取的50名学生上学所需时间均不超过60分钟,将上学所需时间按如下方式分成六组,第一组上学所需时间在[0,10),第二组上学所需时间在[10,20)…,第六组上学所需时间在[50,60],得到各组人数的频率分布直方图,如下图
(1)若抽取的50个样本是用系统抽样的方法得到,且第一个抽取的号码为006,则第五个抽取的号码是多少?
(2)若从50个样本中属于第四组和第六组的所有人中随机抽取2人,设他们上学所需时间分别为a、b,求满足的事件的概率;
(3)设学校配备的校车每辆可搭载40名学生,请根据抽样的结果估计全校应有多少辆这样的校车?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点在
上,以
为切点的
的切线的斜率为
,过
外一点
(不在
轴上)作
的切线
、
,点
、
为切点,作平行于
的切线
(切点为
),点
、
分别是与
、
的交点(如图):
(1)用、
的纵坐标
、
表示直线
的斜率;
(2)若直线与
的交点为
,证明
是
的中点;
(3)设三角形面积为
,若将由过
外一点的两条切线及第三条切线(平行于两切线切点的连线)围成的三角形叫做“切线三角形”,如
,再由
、
作“切线三角形”,并依这样的方法不断作切线三角形……,试利用“切线三角形”的面积和计算由抛物线及
所围成的阴影部分的面积
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大小;
(2)若△ABC的面积S=5,b=5,求sinBsinC的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com