精英家教网 > 高中数学 > 题目详情
如图所示,设点F坐标为(1,0),点P在y轴上运动,点M在x轴运动上,其中
PM
PF
=0,若动点N满足条件
PN
=
MP

(Ⅰ)求动点N的轨迹E的方程;
(Ⅱ)过点F(1,0)的直线l和l′分别与曲线E交于A、B两点和C、D两点,若l⊥l′,试求四边形ACBD的面积的最小值.
(Ⅰ)设N(x,y),M(x0,0),P(0,y0),F(1,0),
PM
=(x0,-y0),
PN
=(x,y-y0),
PF
=(1,-y0)

PM
PF
=0,得x0+y02=0①
PN
=
MP
,得
PN
+
PM
=0
,得(x+x0,y-2y0)=0,即
x+x0=0
y-2y0=0
,∴
x0=-x
y0=
y
2

代入①得,y2=4x即为所求;
(Ⅱ)设l方程为y=k(x-1),由
y2=4x
y=k(x-1)
,消去x,得y2-
4
k
-4=0

设A(x1,y1),B(x2,y2),则y1y2=-4,y1+y2=
4
k
,于是
|AB|=
1+
1
k2
|y1-y2|=
(1+
1
k2
)[(y1+y2)2-4y1y2]
=
(1+
1
k2
)(
16
k2
+16)
=4+
4
k2

设l′的方程为y=-
1
k
(x-1)
,由
y2=4x
y=-
1
k
(x-1)
,消去x,得y2+4ky-4=0.
设C(x3,y3),D(x4,y4),则y3y4=4,y3+y4=-4k.
|CD|=
1+k2
|y3-y4|=
(1+k2)[(y3+y4)2-4y3y4]

|CD|=4+
4
(-
1
k
)2
=4+4k2

于是SABCD=
1
2
|AB|•|CD|=
1
2
(4+
4
k2
)(4+4k2)

=8(2+k2+
1
k2
)≥8(2+2
k2
1
k2
)=32
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
经过点A(2,1),离心率为
2
2
.过点B(3,0)的直线l与椭圆C交于不同的两点M,N.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求
BM
BN
的取值范围;
(Ⅲ)设直线AM和直线AN的斜率分别为kAM和kAN,求证:kAM+kAN为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线C上的动点P到点(1,0)的距离与到定直线L:x=-1的距离相等,
(1)求曲线C的方程;
(2)直线m过(-2,1),斜率为k,k为何值时,直线m与曲线C只有一个公共点,有两个公共点;没有公共点?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(文)已知椭圆
x2
36
+
y2
9
=1
的一条弦的中点为P(4,2),求此弦所在直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过动点M(a,0)且斜率为1的直线l与抛物线y2=2px(p>0)交于不同的两点A、B,试确定实数a的取值范围,使|AB|≤2p.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设F1、F2为椭圆
x2
9
+
y2
4
=1
的两个焦点,P为椭圆上一点,已知P、F1、F2是一个直角三角形的三个顶点,且|PF1|>|PF2|,则
|PF1|
|PF2|
的值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点A(1,0),定直线l:x=-1,B为l上的一个动点,过B作直线m⊥l,连接AB,作线段AB的垂直平分线n,交直线m于点M.
(1)求点M的轨迹C的方程;
(2)过点N(4,0)作直线h与点M的轨迹C相交于不同的两点P,Q,求证OP⊥OQ(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线mx+ny=4和⊙O:x2+y2=4相交,则点P(m,n)与椭圆C:
x2
4
+
y2
3
=1的位置关系为(  )
A.点P在椭圆C内B.点P在椭圆C上
C.点P在椭圆C外D.以上三种均有可能

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知p:方程
x2
k-4
+
y2
k-6
=1
表示双曲线,q:过点M(2,1)的直线与椭圆
x2
5
+
y2
k
=1
恒有公共点,若p∧q为真命题,求k的取值范围.

查看答案和解析>>

同步练习册答案