精英家教网 > 高中数学 > 题目详情
13.已知a=log20.5,b=20.5,c=0.52,则a、b、c的大小关系是(  )
A.a<c<bB.a<b<cC.b<c<aD.c<a<b

分析 利用指数函数与对数函数的单调性即可得出.

解答 解:∵a=log20.3<0,b=20.5>1,c=0.52∈(0,1),
∴b>c>a.
故选:A.

点评 本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.设i是虚数单位,则复数z=i(3-4i)的虚部与模的和(  )
A.8B.9C.5+3iD.5+4i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x≥0)}\\{-x+1(x<0)}\end{array}\right.$,则f(-1)的值为(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,$0<φ<\frac{π}{2}$)的周期为π,且图象上一个最低点为$M({\frac{2π}{3}\;,\;\;-2})$.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)当$x∈[{0\;,\;\;\frac{π}{12}}]$,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在平行四边形ABCD中,AC为一条对角线,$\overrightarrow{AB}=({2\;,\;\;4})$,$\overrightarrow{AC}=({1\;,\;\;3})$,则$\overrightarrow{DA}$=(1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=x2和g(x)=lnx,作一条平行于y轴的直线,交f(x),g(x)图象于A,B两点,则|AB|的最小值为$\frac{1}{2}$-ln$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知z=(m+3)+(m-1)i在复平面内对应的点在第三象限,则实数m的取值范围是(  )
A.(-3,1)B.(-1,3)C.(1,+∞)D.(-∞,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.给出下列3个命题:
命题p:若a2≥20,则方程x2+y2+ax+5=0表示一个圆.
命题q:?m∈(-∞,0),方程0.1x+msinx=0总有实数解.
命题r:?m∈(1,3),msinx+mcosx=3$\sqrt{2}$.
那么,下列命题为真命题的是(  )
A.p∨rB.p∧(¬q)C.(¬q)∧(¬r)D.(¬p)∧q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.三棱柱各面所在平面将空间分成(  )部分.
A.18B.21C.24D.27

查看答案和解析>>

同步练习册答案