精英家教网 > 高中数学 > 题目详情

【题目】某一段海底光缆出现故障,需派人潜到海底进行维修,现在一共有甲、乙、丙三个人可以潜水维修,由于潜水时间有限,每次只能派出一个人,且每个人只派一次,如果前一个人在一定时间内能修好则维修结束,不能修好则换下一个人.已知甲、乙、丙在一定时间内能修好光缆的概率分别为,且各人能否修好相互独立.

1)若按照丙、乙、甲的顺序派出维修,设所需派出人员的数目为X,求X的分布列和数学期望;

2)假设三人被派出的不同顺序是等可能出现的,现已知丙在乙的下一个被派出,求光缆被丙修好的概率.

【答案】1)分布列见解析;期望为;(2.

【解析】

1X的可能取值为123.分别计算出概率得分布列,由期望公式计算出期望;

2)丙在乙的下一个被派出,有两种情形:乙丙甲,甲乙丙,在这个条件下求出光缆被丙修好的概率,再由条件概率公式与互斥事件概率公式计算可得.

1X的可能取值为123.

.

所以X的分布列为

X

1

2

3

P

0.4

0.3

0.3

.

2)由题意知,三人的顺序只可能有两种:“甲、乙、丙”或“乙、丙、甲”,且概率都为.

若为“甲、乙、丙”,则光缆被丙修好的概率为.

若为“乙、丙、甲”,则光缆被丙修好的概率为.

所以光缆被丙修好的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某基地蔬菜大棚采用无土栽培方式种植各类蔬菜.根据过去50周的资料显示,该基地周光照量(小时)都在30小时以上,其中不足50小时的有5周,不低于50小时且不超过70小时的有35周,超过70小时的有10周.根据统计,该基地的西红柿增加量(千克)与使用某种液体肥料的质量(千克)之间的关系如图所示.

(1)依据上图,是否可用线性回归模型拟合的关系?请计算相关系数并加以说明(精确到0.01).(若,则线性相关程度很高,可用线性回归模型拟合)

(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪运行台数受周光照量限制,并有如下关系:

周光照量(单位:小时)

光照控制仪运行台数

3

2

1

若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.以频率作为概率,商家欲使周总利润的均值达到最大,应安装光照控制仪多少台?

附:相关系数公式

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线l的极坐标方程为,曲线C的参数方程为(为参数).

若曲线上存在MN两点关于直线l对称,求实数m的值;

若直线与曲线相交于PQ两点,且,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了适应高考改革,某中学推行“创新课堂”教学.高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取名学生的成绩进行统计分析,结果如下表:(记成绩不低于分者为“成绩优秀”)

分数

甲班频数

乙班频数

(Ⅰ)由以上统计数据填写下面的列联表,并判断是否有以上的把握认为“成绩优秀与教学方式有关”?

甲班

乙班

总计

成绩优秀

成绩不优秀

总计

(Ⅱ)现从上述样本“成绩不优秀”的学生中,抽取人进行考核,记“成绩不优秀”的乙班人数为,求的分布列和期望.

参考公式:,其中

临界值表

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程选讲

在平面直角坐标系中,以原点为极点,以轴非负半轴为极轴建立极坐标系, 已知曲线的极坐标方程为,直线的极坐标方程为

(Ⅰ)写出曲线和直线的直角坐标方程;

(Ⅱ)设直线过点与曲线交于不同两点的中点为的交点为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,两两垂直,分别是的中点.

1)证明:平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近两年来,以《中国诗词大会》为代表的中国文化类电视节目带动了一股中国文化热潮.某台举办闯关答题比赛,共分两轮,每轮共有4类题型,选手从前往后逐类回答,若中途回答错误,立马淘汰,若全部回答正确,就能获得一枚复活币并进行下一轮答题,两轮都通过就可以获得最终奖金.选手在第一轮闯关获得的复活币,系统会在下一轮答题中自动使用,即下一轮重新进行闯关答题时,在某一类题型中回答错误,自动复活一次,视为答对该类题型.若某选手每轮的4类题型的通过率均分别为,则该选手进入第二轮答题的概率为_________;该选手最终获得奖金的概率为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生参加某高校的自主招生考试,须依次参加ABCDE五项考试,如果前四项中有两项不合格或第五项不合格,则该考生就被淘汰,考试即结束;考生未被淘汰时,一定继续参加后面的考试.已知每一项测试都是相互独立的,该生参加ABCD四项考试不合格的概率均为,参加第五项不合格的概率为

1)求该生被录取的概率;

2)记该生参加考试的项数为,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两定点,满足条件的点P的轨迹是曲线E,直线y=kx-1与曲线E交于A,B两点,

(1)求k的取值范围;

(2)如果,且曲线E上存在点C,使,求m的值和的面积S。

查看答案和解析>>

同步练习册答案