精英家教网 > 高中数学 > 题目详情

【题目】如图1,在梯形中,,过分别作的垂线,垂足分别为,已知,将梯形沿同侧折起,使得平面平面,平面平面,得到图2.

(1)证明:平面

(2)求三棱锥的体积.

【答案】(1)见证明;(2)

【解析】

(1)设,取中点,连接,证得,且,得到四边形为平行四边形,得出,利用线面平行的判定定理,即可证得平面.

(2)证得,得到点到平面的距离等于点到平面的距离,再利用锥体的体积公式,即可求解.

(1)设,取中点,连接

∵四边形为正方形,∴中点,

中点,∴

因为平面平面,平面平面

平面,所以平面

又∵平面平面,∴平面平面,同理,平面

又∵,∴

,且,∴四边形为平行四边形,∴

平面平面,∴平面.

(2)因为平面平面,所以

∴点到平面的距离等于点到平面的距离.

∴三棱锥的体积公式,可得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C的方程为为椭圆C的左右焦点,离心率为,短轴长为2。

(1)求椭圆C的方程;

(2)如图,椭圆C的内接平行四边形ABCD的一组对边分别过椭圆的焦点,求该平行四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1) ,求的最小值;

(2) 上单调递增,求的取值范围;

(3) 求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“随机模拟方法”计算曲线与直线所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[1e]上的均匀随机数xi10个在区间[01]上的均匀随机数,其数据如下表的前两行.

x

2.50

1.01

1.90

1.22

2.52

2.17

1.89

1.96

1.36

2.22

y

0.84

0.25

0.98

0.15

0.01

0.60

0.59

0.88

0.84

0.10

lnx

0.90

0.01

0.64

0.20

0.92

0.77

0.64

0.67

0.31

0.80

由此可得这个曲边三角形面积的一个近似值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,且

1)令证明:是等差数列,是等比数列;

2)求数列的通项公式;

3)求数列的前n项和公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,四边形是直角梯形,底面的中点.

1)求证:平面平面

2上是否存在点,使得三棱锥的体积是三棱锥体积的.若存在,请说明点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P-ABCD中,四边形ABCD是直角梯形,底面,,,的中点.

(1)求证:平面平面

(2)若与平面所成角的正弦值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为提高课堂教学效果,最近立项了市级课题《高效课堂教学模式及其运用》,其中王老师是该课题的主研人之一,为获得第一手数据,她分别在甲、乙两个平行班采用“传统教学”和“高效课堂”两种不同的教学模式进行教学实验.为了解教改实效,期中考试后,分别从两个班级中各随机抽取名学生的成绩进行统计,作出如图所示的茎叶图,成绩大于分为“成绩优良”.

1)由以上统计数据填写下面列联表,并判断能否在犯错误的概率不超过的前提下认为“成绩优良与教学方式有关”?

甲班

乙班

总计

成绩优良

成绩不优良

总计

2)从甲、乙两班个样本中,成绩在分以下(不含分)的学生中任意选取人,求这人来自不同班级的概率.

附:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】手机运动计步已经成为一种新时尚.某单位统计了职工一天行走步数(单位:百步),绘制出如下频率分布直方图:

1)求直方图中a的值,并由频率分布直方图估计该单位职工一天步行数的中位数;

2)若该单位有职工200人,试估计职工一天行走步数不大于13000的人数;

3)在(2)的条件下,该单位从行走步数大于150003组职工中用分层抽样的方法选取6人参加远足拉练活动,再从6人中选取2人担任领队,求这两人均来自区间(150170]的概率.

查看答案和解析>>

同步练习册答案