精英家教网 > 高中数学 > 题目详情

【题目】椭圆规是画椭圆的一种工具,如图1所示,在十字形滑槽上各有一个活动滑标,有一根旋杆将两个滑标连成一体,为旋杆上的一点,且在两点之间,且,当滑标在滑槽内作往复运动,滑标在滑槽内随之运动时,将笔尖放置于处可画出椭圆,记该椭圆为.如图2所示,设交于点,以所在的直线为轴,以所在的直线为轴,建立平面直角坐标系.

1)求椭圆的方程;

2)设是椭圆的左右顶点,点为直线上的动点,直线分别交椭圆于两点,求四边形面积为,求点的坐标.

【答案】12

【解析】

1)由题得,结合图2,可知椭圆的长半轴长为3,短半轴长为1,故可得椭圆的方程;

2)设点,其中,则直线的方程为,直线的方程为,设,由,算出,同理得,所以得四边形的面积为,令解方程求出,当时,由对称性可得,故可得符合条件的点.

1)由题得,所以椭圆的长半轴长为3,短半轴长为1

故椭圆的方程为:

2)设点,其中,则直线的方程为,直线的方程为..

,消,由于,则.

,消,由于,则.

所以四边形的面积为

.

由于

.

解得(舍去),即,当时,由对称性可得.

综上,当点时,四边形的面积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】冠状病毒是一个大型病毒家族,己知可引起感冒以及中东呼吸综合征()和严重急性呼吸综合征()等较严重疾病.而今年出现在湖北武汉的新型冠状病毒()是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.

某医院为筛查冠状病毒,需要检验血液是否为阳性,现有n)份血液样本,有以下两种检验方式:

方式一:逐份检验,则需要检验n.

方式二:混合检验,将其中k)份血液样本分别取样混合在一起检验.

若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为.

假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p.现取其中k)份血液样本,记采用逐份检验方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为.

1)若,试求p关于k的函数关系式

2)若p与干扰素计量相关,其中)是不同的正实数,

满足)都有成立.

i)求证:数列等比数列;

ii)当时,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数的期望值更少,求k的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且经过点.

1)求椭圆的方程;

2)过点作直线交椭圆两点,若点关于轴的对称点为,证明直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面,点是矩形内(含边界)的动点,且,直线与平面所成的角为.记点的轨迹长度为,则______;当三棱锥的体积最小时,三棱锥的外接球的表面积为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD的底面ABCD是正方形,PA⊥底面ABCDEF分别是ACPB的中点.

1)证明:EF∥平面PCD

2)求证:面PBD⊥面PAC

3)若PA=AB,求PD与平面PAC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)证明:当时,有最小值,无最大值;

2)若在区间上方程恰有一个实数根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知点的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)求的普通方程和的直角坐标方程;

2)设曲线与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某餐厅通过查阅了最近5次食品交易会参会人数 (万人)与餐厅所用原材料数量 (袋),得到如下统计表:

第一次

第二次

第三次

第四次

第五次

参会人数 (万人)

13

9

8

10

12

原材料 (袋)

32

23

18

24

28

(1)根据所给5组数据,求出关于的线性回归方程.

(2)已知购买原材料的费用 (元)与数量 (袋)的关系为

投入使用的每袋原材料相应的销售收入为700元,多余的原材料只能无偿返还,据悉本次交易大会大约有15万人参加,根据(1)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润销售收入原材料费用).

参考公式: .

参考数据: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,侧棱底面,点的中点.

求证:平面

若直线与平面所成角为,求二面角的大小.

查看答案和解析>>

同步练习册答案